UNIVERSITY OF BUCHAREST

Faculty of Physics

MASTER'S PROGRAMME	THEORETICAL AND COMPUTATIONAL PHYSICS		
Science field	PHYSICS		
Duration	2 years (4 semesters)/ 120 ECTS		
Type of study	full time (F)		
full time (F)/ part-time (IFR)/ distance (ID)			

Courses Syllabus

Table of Contents

Compulsory Courses	2
DI.101.FTC Quantum statistical physics	
DI.102.FTC Group theory with applications in physics	5
DI.103.FTC Experimental methods in Physics	8
DI.106.FTC Research activity (traineeship)	
DI.108.FTC Theory of nuclear systems and photonuclear reactions	16
DI.109.FTC Simulation methods in theoretical physics	19
DI.112.FTC Research activity (traineeship)	23
DI.201.FTC Introduction to quantum theory of fields	27
DI.203.FTC Relativistic quantum mechanics and Quantum electrodynamics	31
DI.205.FTC Research activity (traineeship)	35
DI.206.FTC Introduction to gravity theory and cosmology	39
DI.208.FTC Research activity (traineeship)	44
Elective Courses	
DO.104.1.FTC Nonlinear dynamics, chaos, physics of complex systems	47
DO.104.2.FTC Special chapters of mathematics	
DO.107.1.FTC Interaction of laser radiation with matter	54
DO.107.2.FTC Quantum optics	
DO.110.1.FTC Introduction to quantum theory of identical particles	
DO.110.2.FTC Theory of critical phenomena	
DO.111.1.FTC Quantum information and communication	69
DO.111.2.FTC Collisions theory	
DO.202.1.FTC Advanced methods in statistical physics	
DO.202.2.FTC Computational methods for electronic structures of condensed systems	
D0.204.1.FTC Computational methods in modern physics	85
D0.204.2.FTC Theory of intense laser radiation interaction with atomic and nuclear systems	
Optional Courses	93
DFC.113.FTC Physics of mesoscopic systems	
DFC.114.FTC Advanced methods for parallel computing	
DFC.210.FTC Computational approaches in high-energy physics	
DFC.211.FTC Extensions of the standard model of elementary particles	104

Compulsory Courses

DI.101.FTC Quantum statistical physics

1. Study program

<u> </u>		
1.1. University	University of Bucharest	
1.2. Faculty	Faculty of Physics	
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma	
	and Lasers	
1.4. Field of study	Physics	
1.5. Course of study	Master of Science	
1.6. Study program	Theoretical and Computational Physics (in English)	
1.7. Study mode	Full-time study	

2. Course unit

2.1. Course unit title Quantum Statistical Physics								
2.2. Teacher			Prof. Dr. Virgil H	3aran				
2.3. Tutorials/Practicals instructor(s)			Lect. Dr. Victor I	Dinu				
	2.5.		2.6	6. Type of		2.7. Type	Content ¹⁾	DA
I	Semester	1	ev	aluation	Е	of course		
						unit		
							Type ²⁾	DI
	•	acticals instructor(s) 2.5.	acticals instructor(s) 2.5.	acticals instructor(s) 2.5. 2.6	Prof. Dr. Virgil I acticals instructor(s) Lect. Dr. Victor I 2.5. 2.6. Type of	Prof. Dr. Virgil Baran acticals instructor(s) Lect. Dr. Victor Dinu 2.5. 2.6. Type of	Prof. Dr. Virgil Baran acticals instructor(s) Lect. Dr. Victor Dinu 2.5. I Semester 1 evaluation E of course	Prof. Dr. Virgil Baran Lect. Dr. Victor Dinu 2.5. I Semester 1 evaluation E of course unit Content of Content of Content of Course unit Content of Conte

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					
3.2.4. Preparation for exam					4
3.2.5. Other activities					0

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

in Trerequisites (in necessary)							
	4.1. curriculum	Quantum mechanics, Classical Statistical Mechanics, Equations of Mathematical Physics					
		1 Hysics					
	4.2. competences	Knowledge about: mechanics, thermodynamics, algebra, solving differential equations					

5. Conditions/Infrastructure (if necessary)

_	e conditions, init astractare (it necessary)								
	5.1. for lecture	Video projector							
	5.2. for practicals/tutorials								

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

6. Specific competences acquired

Professional	• Identify and proper use of the main physical laws and principles in a given context: the use					
competences	of the concepts of quantum statistical physics					
	Solving problems of physics under given conditions					
	• Use of the physical principles and laws for solving theoretical or practical problems with qualified tutoring					
	• Rigorous knowledge of quantum theory, concepts, notions and problems in the area of					
	many-body systems at finite temperature					
	Ability to use this knowledge in various branches of physics					
Transversal	Efficient use of sources of information and communication resources and training					
competences	assistance in a foreign language					
	Efficient and responsible implementation of professional tasks, with observance of the					
	laws, ethics and deontology.					

7. Course objectives

Source objectives				
7.1. General objective	Understanding the fundamental aspects related to the study of quantum statistical physics			
7.2. Specific objectives	Assimilation of formalism of quantum statistical theory: concepts, methods of statistical ensambles, quantum distributions. Explaining the peculiar fenomena of quantum domain, which have no classical analogue. Acquire the skills to describe and calculate the physical properties of quantum systems involved in different physical conditions.			

8. Contents

9.1 Lacture [about and]	Tanahina tanhui mas	01
8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Quantum states. Microstates and macrostates of a quantum system. Statistical (density) operator: definition and properties. Time evolution.	Systematic exposition - lecture. Examples	2 hours
Quantum entropy. Boltzmann-von Neumann formula. Physical interpretation. Principle of maximum entropy. Equilibrium distributions. Statistical operator in equilibrium. Boltzmann-Gibbs formula.	Systematic exposition - lecture. Examples	4 hours
Partition functions: definition and properties. Entropy in thermodynamic equilibrium, natural variables. Equilibrium statistical ensembles. Ensemble averages. Canonical, grand-canonical and microcanonical ensembles.	Systematic exposition - lecture. Examples	4 hours
The indistinguishability of quantum particles. Occupations number representation. Pauli principle. Applications.	Systematic exposition - lecture. Examples	6 hours
Grand-canonical partition functions for systems of independent fermions. Fermi-Dirac statistics. Applications.	Systematic exposition - lecture. Examples	2 hours
Grand-canonical partition functions for systems of independent bosons. Bose-Einstein statistics. Applications.	Systematic exposition - lecture. Examples	2 hours
Equilibrium radiation, Planck law. The black-body radiation. Applications.	Systematic exposition - lecture. Examples	4 hours
Quantum liquids. Helium three. Helium four and Bose-Einstein condensation.	Systematic exposition - lecture. Examples	4 hours

Bibliography:

- 1. R. Balian, From Microphysics to Macrophysics Vol. 1, 2, Springer 2006
- 2. L.D. Landau, E.E. Lifsit, Fizică Statistică, Editura Tehnică
- 3. K. Huang, Statistical Mechanics, John Wiley & sons, 1987
- **4.** Radu Paul Lungu, Elemente de mecanica statistica cuantica, Editura UB, 2017.

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
The statistical thermodynamics of the ideal fermionic gas. White dwarf stars. Neutron stars.	Problem solving	6 hours
The statistical thermodynamics of the ideal bosonic gas.	Problem solving	6 hours
Statistical mechanics of lattice vibrations. Phonons. Debye model.	Problem solving	4 hours
Heisenberg model and applications.	Problem solving	4 hours
Landau two-fluids model. Maxon-roton spectrum.	Problem solving	4 hours
Linear response. Fluctuation-dissipation theorem.	Problem solving	4 hours

Bibliography:

- 1. R. Balian, From Microphysics to Macrophysics Vol. 1, 2, Springer 2006
- 2. D. Dalvit, J. Frastai, I. Lawrie, *Problems on statistical mechanics*, IOP 1999.
- 3. Radu Paul Lungu, Elemente de mecanica statistica cuantica, Editura UB, 2017

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test and oral examination	60%
- Ability to use specific problem solving methods	Homeworks	40%
	 Clarity and coherence of exposition Correct use of the methods/physical models The ability to give specific examples Ability to use specific problem 	- Clarity and coherence of exposition - Correct use of the methods/physical models - The ability to give specific examples - Ability to use specific problem Written test and oral examination examination Homeworks

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

At least 50% of exam score and of homeworks.

Practicals/Tutorials instructor(s)
Teacher's name and signature
name(s) and signature(s)

Date Teacher's name and signature name(s) and signature(s) 10.06.2019

Prof. dr. Virgil Baran Lect. dr. Victor Dinu

Date of approval Head of Department

Prof.dr. Virgil Baran

DI.102.FTC Group theory with applications in physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course title	ry with application	ns in p	hysics			
2.2. Teacher	Lect. dr. Victor	Lect. dr. Victor Dinu				
2.3. Tutorials instructor(s) Lect. dr. Victor			Dinu			
2.4. Practicals instructor(s)						
2.5. Year of 2.6.	2.7	. Type of		2.8. Type	Content ¹⁾	DA
study 1 Semes	er 2 evaluation		Е	of course	Type ²⁾	DI
				unit	-71	

3. Total estimated time (hours/semester)

4	distribution: Lecture	2	Practicals/Tutorials	2
56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study				
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				
3.2.2. Research in library, study of electronic resources, field research				
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				
3.2.4. Preparation for exam				4
3.2.5. Other activities				0
	dy ourse i	4 Lecture 56 Lecture dy ourse notes, manuals, lecture ectronic resources, field research	4 Lecture 2 56 Lecture 28 dy ourse notes, manuals, lecture notes ectronic resources, field research	4 Lecture 2 Practicals/Tutorials 56 Lecture 28 Practicals/Tutorials dy ourse notes, manuals, lecture notes, bibliography ectronic resources, field research

3.3. Total hours of individual study	65
3.4. Total hours per semester	125
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Linear algebra, Quantum mechanics
4.2. competences	Knowledge about: mechanics, atomic physics, solid state physics, nuclear physics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

6. Specific competences acquired

Professional	Ability to use this knowledge in various branches of physics
competences	Ability of analyse and interpret experimental data, formulate rigorous theoretical
1	conclusions.
	- Ability to employ mathematical models based on symmetries to describe the physical
	phenomena.

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

Transversal	Evidence the relation between irreducible representations and invariant subspaces of Hilbert
competences	space; evidence the connection between energy spectrum and irreducible representations.

7. Course objectives

· Course objectives		
7.1. General objective	Understanding the fundamental aspects related to the study of	
	symmetries in physics. Expose the basic properties of groups and their	
	matrix representations.	
	The study of the role of group theory in quantum mechanics.	
7.2. Specific objectives	Assimilation of the formalism of group theory: concepts, methods,	
	representations.	
	Acquire the skills to describe and calculate the physical properties of	
	physicsl systems based on symmetries.	

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Introductory notions:symmetries of a physical system, the role of group theory in physics, groups clasification.	Systematic exposition - lecture. Examples	1 hours
Group axioms, group multiplication table, subgroups, mappings of groups, direct product of groups.	Systematic exposition - lecture. Examples	1 hours
Conjugate elements, equivalence classes, invariant subgroups, cosets, quotient group	Systematic exposition - lecture. Examples	1 hours
Matrix representation of a group, equivalent representations, irreducible representation. Schur lemma's.	Systematic exposition - lecture. Examples	1 hours
Orthogonality relations for irreducible representations of a finite group, inequivalent representations for finite groups, characters and their orthogonality relations, character table.	Systematic exposition - lecture. Examples	2 hours
Group theory and quantum mechanics. From degeneracy to group representations: classification of the eigenvalues and of the eigenstates of energy according to the irreducible representations of symmetry group. Applications.	Systematic exposition - lecture. Examples	2 hours
Discrete symmetries. Rotation group in quantum mechanics. Tensor operators. Wigner-Eckart theorem. Aplications in atomic and nuclear physics.	Systematic exposition - lecture. Examples	4 hours

Bibliography:

- 1. J.F. Corwell, *Group theory in physics. An Introduction*. Academic Press, 1997.
- 2. A. Zee, Group theory in a nutshell for physicist, Princeton University Press, 2017

3. W.K. Tung, *Group theory in physics*, World Scientific, 1985

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Basic group theory. Aplications.	Problem solving	1 hours
Discrete groups representations.	Problem solving	1 hours
Permutation groups. Dihedral groups.	Problem solving	2 hours
Group theory and harmonic motion.	Problem solving	2 hours
Unitary representations for rotations, Wigner matrices, Spherical tensors.	Problem solving	4 hours
Discrete translations.	Problem solving	2 hours
Bibliography:		

- 1. A. Zee, Group theory in a nutshell for physicist, Princeton University Press, 2017
- 2. W.K. Tung, Group theory in physics: Problems and solutions, World Scientific, 1991
- 3. S. Sternberg, Group theory and physics, Cambridge University Press, 1994

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	Weight in final mark
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test/oral examination	60%
10.5.1. Tutorials	- Ability to use specific problem solving methods	Homeworks	40%

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

At least 50% of exam score.

Practicals/Tutorials instructor(s)

Date Teacher's name and signature name(s) and signature(s)

10.06.2019

Lecturer. dr. Victor Dinu Lecturer dr. Victor Dinu

Date of approval Head of Department

Prof.dr. Virgil Baran

DI.103.FTC Experimental methods in Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title		F	Exper	iment	al methods în Pl	hysics			
2.2. Teacher			Conf. dr. Vasile Bercu						
2.3. Tutorials instructor(s)									
2.4. Practicals instructor(s)				*	exandru Jipa, Lect. oma, Conf. dr. Crist				
2.5. Year of study	1	2.6. Semester	2		Type of lation	Е	2.8. Type of course unit	Content ¹⁾ Type ²⁾	DA DI

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	5	distribution: lecture	2	Tutorials/Practicals	0/3
3.2. Total hours per semester	70	distribution: lecture	28	Tutorials/Practicals	0/42
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					25
3.2.2. Research in library, study of electronic resources, field research					25
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					26
3.2.4. Examination					4
3.2.5. Other activities	1				

3.3. Total hours of individual study	76
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

Terequisites (II necessary)					
4.1. curriculum	Electricitate și magnetism, Optică, Fizica solidului I, Electrodinamică, Mecanică cuantică				
4.2. competences	Using of software tools for data analysis/processing				

5. Conditions/Infrastructure (if necessary)

_		(00000011)
	5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
	5.2. for tutorials/practicals	- research infrastructure for morphological, optical, magnetic and
		microstructural characterizations

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

6. Acquired specific competencies

o. Acquirea specific	competencies
Professional competencies	Use of methods for morphological, optical, magnetic and microstructural characterizations.
competencies	
	Knowledge of physics of interaction of radiation with matter
	Creative use of acquired physical knowledge related to morphological, optical,
	magnetic and microstructural characterizations.
	Analysis and communication of scientific data, communication for physics
	popularisation.
	Use of specific software tools.
Transversal	
competencies	Efficient use of scientific information resources and of communication and of
1	resources for professional formation in English.
	• Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

. Course objectives	
7.1. General objective	Introduction to techniques for microstructural, morphological, magnetic
	and optical characterizations of materials
7.2. Specific objectives	Study of magnetic properties of materials
	AFM studies of surface morphology
	Measuring optical coefficients of thin films
	Micro-structural studies based on ion beams
	Highlighting of essential problems in understanding of specific
	phenomena, in order to stimulate creative and critical thinking în solving
	problems.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations
Atomic force microscopy (AFM) – physical principles. Working modes (non-contact, contact). Characterization of surface morphology. Magnetic force microscopy (MFM), Scanning tunneling microscopy (STM). Applications	Systematic exposition - lecture. Examples.	6 hours
Electron spin resonance. Investigation of defects în semiconductors.	Systematic exposition - lecture. Examples.	6 hours
Ellipsometry. Physical principles. Optical coefficients of thin films.	Systematic exposition - lecture. Examples.	6 hours
Magnetic propeties of condensed systems. Vibrating Sample Magnetometer and measurement of magnetic susceptibility at room temperature. Temperature effects on magnetic properties.	Systematic exposition - lecture. Examples.	4 hours
Characterization techniques of condensed systems using accelerated ion beams (RBS, ERDA, PIXE). Applications.	Systematic exposition - lecture. Examples.	6 hours

References:

1. M. Nastasi, J.W. Mayer, Y. Wang, *Ion beam analysis – Fundamentals and applications* (CRC Press, Boca Raton, USA, 2015).

- 2. M. Fox, Optical properties of solids (Oxford University Press, Oxford, UK, 2001).
- 3. C. Necula, Determinarea proprietăților magnetice ale rocilor pe baza histerezisului magnetic (Ars Docendi, București, 2017),

Teaching and learning techniques	Observations
Teaching and learning techniques	Observations
Guided practical work	6 hours
Guided practical work	3 hours
Guided practical work	6 hours
Guided practical work	9 hours
Teaching and learning	Observations
	Teaching and learning techniques Guided practical work

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	- Explicitness, coherence and concision of scientific statements; - Correct use of physical models and of specific mathematical methods; - Ability to analyse specific examples;	Written and oral exam	50%

I technique	
specific e	and correct use of colloquium 50.00% srimental techniques ssing and analysis;
10.5.3. Project [if applicable]	

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

Correct solving of subjects indicated as required for obtaining mark 5.

Date Teacher's name and signature Practicals/Tutorials instructor(s)

name(s) and signature(s)

25.05.2019 Conf. dr. Vasile Bercu Prof. dr. Alexandru Jipa

Conf. dr. Vasile Bercu Conf. dr. Cristian Necula Lect. dr. Adriana Bălan Lect. dr. Ovidiu Toma

Date of approval Head of department, 10.06.2019 Conf. dr. Petrică Cristea

DI.106.FTC Research activity (traineeship)

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2. Course unit									
2.1. Course title Research acti			ivity (trainees	hip)					
2.2. Teacher			Virgil Băran	, Alexano	lru Nicolin, F	Roxana Zus			
2.3. Tutorials instructor(s)									
2.4. Practicals in	structor	(s)							
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DS
study	1	Semester	1	evalı	uation	V	of course	Type ²⁾	DI
							unit		

3. Total estimated time (hours/semester)

				1	
3.1. Hours per week in curriculum	4	distribution: Lecture		Practicals/Tutorials	
3.2. Total hours per semester					
	56	Lecture		Practicals/Tutorials	
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					hours 2
3.2.2. Research in library, study of electronic resources, field research					2
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					11
3.2.4. Preparation for exam				4	
3.2.5. Other activities				0	
2.2 Test 1 house of the Heat Inc. 1 at 1 a					

3.3. Total hours of individual study	15
3.4. Total hours per semester	75
3.5. ECTS	3

4. Prerequisites (if necessary)

4.1. curriculum	-
4.2. competences	-

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	-
5.2. for practicals/tutorials	Scientific computing laboratory

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

6. Specific competences acquired

Professional	Identify and use indicators that describe chaotic behavior in classical and quantum systems
competences	Solve the physics problems which are described mathematically by ordinary nonlinear
	differential equations
	Apply creatively the knowledge acquired in order to understand and model physical systems
	with chaotic behavior
	Communicate and analyze information of a didactic, scientific and popular character in the
	field of physics
Transversal	Efficient use of information sources and resources for communication and training, in
competences	Romanian and another language used internationally
	Carrying out professional tasks effectively, respecting the legislation, ethics and deontology
	specific to the field.

7. Course objectives

7.1. General objective	Understanding theoretically and computationally the main indicators that			
	describe chaotic behavior			
7.2. Specific objectives	Detailed study of some physical systems (classical or quantum) with			
	chaotic behaviour			
	Understanding how these systems are modelled			
	Forming a creative and autonomous way of thinking			

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Bibliography:		
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Bibliography:		
8.3 Laboratory	Teaching and learning techniques	Observations
Bibliography:		
8.4 Project	Teaching and learning techniques	Observations
Depending on the laboratory/research center which she/he selects, the student will choose a research project from a sub-domain of theoretical and / or computational physics or their applications. Examples of dedicated projects this semester: - Precise calculation of Feigenbaum coefficients for nonlinear maps - Fingerprints of classical chaos in chaotic quantum systems - Energy conservation in implicit Runge-Kutta numerical methods applied to equations with Hamiltonian structure - Numerical solution of shells models equations		

In addition to the extended list of research topics of	
the centers of the faculty, students have available	
projects that they can carry out within the	
collaboration agreements that the faculty has with	
research institutes (for example: Horia Hulubei	
National Institute for Physics and Nuclear	
Engineering The National Institute for Laser,	
Plasma & Radiation Physics etc.).	

Bibliography - sample:

- 1. S.H. Strogatz, *Nonlinear dynamics and chaos. With applications to physics, biology, and engineering*, CRC Press, 2015.
- 2. M. Tabor, Chaos and integrability in nonlinear dynamics. An introduction, Wiley, 1989.
- 3. T. Bohr, M.H. Jensen, G. Paladin și A. Vulpiani, *Dynamical systems approach to turbulence*, Cambridge University Press, 2005.
- 4. W.-H. Steeb, *The nonlinear workbook: chaos, fractals, etc.*, World Scientific, 2005.
- 5. B. Leimkuhler şi S. Reich, Simulating Hamiltonian dynamics, Cambridge University Press, 2004.

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of the discipline allows the student to develop skills and abilities for modeling and/or experimental investigation of the various physical phenomena studied in laboratories/research centers and their applications, in order to integrate them in specific activities of research institutes and companies in the field of Theoretical and Computational Physics, as well as in education.

10. Assessment

U. Assessment			
Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture			
10.5.1. Tutorials			
10.5.2 Laboratory			
10.5.3 Project	- Attendance - Clarity, coherence and brevity of the exposure of the acquired knowledge and the results obtained - The correct use of models, formulas and relations of calculation; - Correctly applying specific methods of solving for the given problem and interpreting the numerical results;	Colloquium	100%

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

At least 50% of exam score.

Course coordinator name(s) and signature(s)

Prof. Dr. Virgil Băran Assoc. Prof. Dr. Alexandru Nicolin

Lect. Dr. Roxana Zus

Head of Department Date of approval

Date

10.06.2019

Prof.dr. Virgil Baran

DI.108.FTC Theory of nuclear systems and photonuclear reactions

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title Theory of nuclear systems and photonuclear reactions									
2.2. Teacher			Prof. Dr. Virgil E	3ăran					
2.3. Tutorials/Practicals instructor(s)			Assoc.prof. dr. M	adălir	na Boca				
2.4. Year of		2.5.		2.6	o. Type of		2.7. Type	Content ¹⁾	DS
study	I	Semester	2	eva	aluation	E	of course		
							unit		
								Type ²⁾	DI
	l						l	I	

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					25
3.2.2. Research in library, study of electronic resources, field research					30
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					35
3.2.4. Preparation for exam					4
3.2.5. Other activities				0	
3.2.4. Preparation for exam					

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Quantum Statistical Physics, Electrodynamics			
4.2. competences	Knowledge about: mechanics, algebra, solving differential equations			

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

6. Specific competences acquired

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

Professional	• Identify and proper use of the main physical laws and principles in a given context: the use
competences	of the concepts of theoretical nuclear physics
	Solving problems of physics under given conditions
	 Use of the physical principles and laws for solving theoretical or practical problems with qualified tutoring Rigorous knowledge of quantum theory, concepts, notions and problems in the area of
	modern nuclear physics
	Ability to use this knowledge in interpretation of experimental results
Transversal competences	• Efficient use of sources of information and communication resources and training assistance in a foreign language
	• Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

7. Course objectives	
7.1. General objective	Understanding peculiarities of physical properties of atomic nuclei. Ability to connect physical concepts to experimental information in nuclear physics.
7.2. Specific objectives	Gain the ability to work with theoretical methods of quantum many-body systems adapted to nuclear systems Acquire the skills to describe and calculate the physical properties of quantum many-body systems involved in different physical conditions.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Fundamental properties of nucleon-nucleon interaction. The origin of nuclear interactions, properties of the nuclear forces as derived from experimental observations. The nuclear matter, saturation properties. Observables of interest in nuclear physics	Systematic exposition - lecture. Examples	4 hours
Phenomenological nuclear models: Bohr-Mottelson model, interacting bosons models.	Systematic exposition - lecture. Examples	6 hours
Microscopic nuclear models: shell model and its extensions.	Systematic exposition - lecture. Examples	4 hours
Many-body methods for describing the quantum states of nuclear systems: Hartree-Fock, Bardeen-Cooper -Schrieffer, Time-dependent Hartree-Fock, Random-Phase Approximation.	Systematic exposition - lecture. Examples	6 hours
Electromagnetic transitions in nuclear physics: the interaction between electromagnetic field and nucleus. Multipole electromagnetic transitions, reduced transition probabilities. One particle matrix elements in a spherical basis set, Weisskopf units. The giant dipole resonance and the cross section of absorption of dipole radiation. Sum-rules. Collective excitations in atomic nuclei.	Systematic exposition - lecture. Examples	4 hours
Fundamentals of nuclear astrophysics: supernova explosion, properties of neutron stars, stellar nucleosynthesis, elements abundance. Theoretical basis of nuclear astronomy and cosmology.	Systematic exposition - lecture. Examples	4 hours

Bibliography:

- 1. J.L. Basdevant, J Rich, M. Spiro, Fundamentals in nuclear physics, Springer, 2005.
- 2. W. Greiner, J.A. Maruhn, Nuclear Models, Springer, 1996.

3. P.Ring and P. Schuck, *Nuclear many body problem*, Springer, 2004.

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Fermi gas model for nuclear matter.	Problem solving	1 hours
Pauli quantization for quadrupole degrees of freedom. Collective states of a deformed nucleus. Group theoretical methods for low-lying states.	Problem solving	7 hours
Single particle properties in various potential wells for nuclear systems.	Problem solving	2 hours
Many-body calculations of nuclear properties.	Problem solving	8 hours
Photonuclear reaction. Electromagnetic transitions.	Problem solving	6 hours
Properties of neutrons stars. Supernova explosions.	Problem solving	4 hours

Bibliography: 1. P.A. Martin, F. Rothen, Many-body problems and quantum field theory, Springer, 2002 2. J.Eisenberg and W. Greiner, *Nuclear models*, vol. 1,2, 3

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark		
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test and oral examination	60%		
10.5.1. Tutorials	- Ability to use specific problem solving methods	Homeworks	40%		
10.6. Minimal requirements for passing the exam					
Requirements for mark 5 (10 points scale)					
At least 50% of exam score and of homeworks.					

Date
10.06.2019

Teacher's name and signature
Practicals/Tutorials instructor(s)
name(s) and signature(s)

Assoc.prof. dr. Mădălina Boca

Date of approval

Practicals/Tutorials instructor(s)
name(s) and signature(s)

Head of Department

Prof.dr. Virgil Baran

DI.109.FTC Simulation methods in theoretical physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

· Course unit									
2.1. Course title Simulation			n methods in theoretical physics						
2.2. Teacher			Assoc. Prof. Alexandru Nicolin						
2.3. Tutorials instructor(s)									
2.4. Practicals instructor(s)			Dr. Mihai Marciu						
2.5. Year of		2.6.		2.	7. Type of		2.8. Type	Content ¹⁾	DA
study	1	Semester	2	ev	raluation	Е	of course unit	Type ²⁾	DI

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester		Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					20
3.2.2. Research in library, study of electronic resources, field research					20
3.2.3. Preparation for practicals/tutorials/projects/reports/homework					25
3.2.4. Preparation for exam					4
3.2.5. Other activities					0

3.3. Total hours of individual study	65
3.4. Total hours per semester	125
3.5. ECTS	5

4. Prerequisites (if necessary)

4.1. curriculum	Programing languages, Analytical mechanics, Thermodynamics and Statistical Physics
4.2. competences	Working with software packages which do not require a license for data analysis and
	data processing

5. Conditions/Infrastructure (if necessary)

_		J /
	5.1. for lecture	
	5.2. for practicals/tutorials	Scientific computing laboratory

6. Specific competences acquired

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

Professional	• Understanding classical and quantum Monte-Carlo methods used in the study of physical		
competences	systems		
	• Understanding the Monte-Carlo methods used to calculate multi-dimensional integrals		
	Understanding the use of genetic algorithms for the study of multi-particle systems		
	• Understanding Runge-Kutta methods used for the numerical solution of ordinary		
	differential equations		
	• Understanding Laplace transformations and their use for the numerical treatment of		
	integral equations		
	• Understanding the main discrete models of earthquake simulation and the emergence of		
	self-organized criticality		
	• Understanding the emergence of fractal distributions in complex systems		
Transversal	• Efficient use of scientific information resources and of communication and of resources		
competences	for professional formation in English.		
	• Efficient and responsible implementation of professional tasks, with observance of the		
	laws, ethics and deontology.		

7. Course objectives

7. Course objectives	
7.1. General objective	Presentation of advance methods for numerical simulations in theoretical
	physics
7.2. Specific objectives	Study of the classical and quantum Monte-Carlo methods used in the
	description of physical systems
	Study of Monte-Carlo methods applied in the calculation of multi-
	dimensional integrals
	Study of genetic algorithms
	Study of Runge-Kutta methods applied in numerical solution of
	differential equations with Hamiltonian structure
	The study of Laplace transforms for the numerical treatment of integral
	equations
	The study of complex systems from the perspective of earthquake models,
	fractal distributions, and self-organized criticality

8. Contents

8.1. Lecture	Teaching techniques	Observations/ hours
Presentation of Monte-Carlo methods, in particular the Ising model and the simulated annealing computational processes. Calculation of multidimensional integrals by Monte-Carlo methods.	Systematic exposition - lecture. Examples	6 hours
Monte-Carlo quantum algorithms (variational, diffusive and integral path type). Quantum dots. He clusters on graphite surfaces.	Systematic exposition - lecture. Examples	6 hours
Presentation of the fundamental aspects regarding genetic algorithms and their use in the study of physical systems	Systematic exposition - lecture. Examples	4 hours
Presentation of the implicit Runge-Kutta methods, with emphasis on symplecticness, volume conservation in phase space and numerical rigidity. Presentation of Gaussian quadratures. Case study: differential equations of Hamiltonian structure.	Systematic exposition - lecture. Examples	4 hours
Presentation of integral transformations, in particular Laplace transformations, and their use in the numerical treatment of integral equations	Systematic exposition - lecture. Examples	4 hours

Presentation of discrete models that describe the occurrence of earthquakes. Presentation of self-organized criticality and fractal distributions	Systematic exposition - lecture. Examples	4 hours
---	---	---------

Bibliography:

- 1. D.P. Landau și K. Binder, *A guide to Monte Carlo simulations in statistical physics*, Cambridge University Press, 2014.
- 2. J.B. Anderson, *Quantum Monte Carlo. Origins, development, applications*, Oxford University Press, 2007.
- 3. T. Pang, An introduction to Quantum Monte Carlo methods, Morgan & Claypool Publishers, 2016.
- 4. D.A. Coley, *An introduction to genetic algorithms for scientists and engineers*, World Scientific, 1999.
- 5. J.C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley, 2016.
- 6. D. Porter și D.S.G. Stirling, *Integral equations: from spectral theory to applications*, Cambridge University Press, 1991.

8.2. Tutorials	Teaching and learning techniques	Observations	
One- and two-dimensional Ising systems	Lecture. Problem solving	2 hours	
Analytic solutions of the equations which			
describe implicit Runge-Kutta methods using	Lecture. Problem solving	2 hours	
Gaussian quadratures			

Bibliography:

- 1. B.M. McCoy și T.T. Wu, *The two-dimensional Ising model*, Harvard University Press, 1973.
- 2. E. Hairer et al., Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations, Springer, 2002

8.3 Laboratory	Teaching and learning techniques	Observations
Determination of critical temperature in high dimensional Ising systems using Monte-Carlo methods. Code in Octave/python/C/C ++	Supervised practical activity	2 hours
Calculation of Ising integrals using Monte-Carlo methods. Code in Octave/python/C/C ++	Supervised practical activity	2 hours
Numerical studies on quantum dots using quantum Monte-Carlo algorithms. Code in Octave/python/C/C++	Supervised practical activity	2 hours
Determination of the fundamental state energy for a spin glass using genetic algorithms	Supervised practical activity	2 hours
Numerical solution of non-linear oscillator equations by implicit Runge-Kutta methods. Energy conservation. Code in Octave/python/C/C++	Supervised practical activity	4 hours
Determination of the volumes in the space of the phases populated by the regular and chaotic trajectories for a non-linear system with four dimensions. Code in Octave/python/C/C ++	Supervised practical activity	2 hours
Solving Volterra-type integral equations by means of Laplace transforms. Code in Octave/python/C/C++	Supervised practical activity	2 hours
Numerical resolution of the Olami-Feder-Christensen seismic model. Code in Octave/python/C/C++	Supervised practical activity	2 hours
Determining the distribution of earthquake waiting times. Code in Octave/python/C/C ++	Supervised practical activity	2 hours

Bibliography:

- 1. D.P. Landau și K. Binder, *A guide to Monte Carlo simulations in statistical physics*, Cambridge University Press, 2014.
- 2. T. Pang, An introduction to Quantum Monte Carlo methods, Morgan & Claypool Publishers, 2016.
- 3. D.A. Coley, *An introduction to genetic algorithms for scientists and engineers*, World Scientific, 1999.
- 4. E. Hairer et al., Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations, Springer, 2002

8.4 Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

In order to sketch the contents, to choose the teaching/learning methods, the coordinator of the course consulted the content of similar disciplines taught at Romanian universities and abroad. The content of the discipline is according to the requirements of employment in research institutes in physics and materials science, as well as in education (according to the law).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test/oral examination	60%
10.5.1. Tutorials	- Ability to use specific problem- solving methods	Homework	10%
10.5.2 Laboratory	- Ability to use specific problem- solving methods	Homework	30%
10.5.3 Project			

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

At least 50% of exam score and of homeworks.

Practicals/Tutorials instructor(s)

Date Teacher's name and signature name(s) and signature(s)

11-VI-2019
Assoc. Prof. Alexandru Nicolin Dr. Mihai Marciu

Date of approval Head of Department

Prof. Virgil Băran

DI.112.FTC Research activity (traineeship)

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2. Course unit									
2.1. Course title Research acti			ivity (traineesl	nip)					
2.2. Teacher			Virgil Băran	, Alexano	dru Nicolin, F	Roxana Zus			
2.3. Tutorials instructor(s)									
2.4. Practicals in	structor	(s)							
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DS
study	1	Semester	2	evalı	uation	V	of course	Type ²⁾	DI
							unit	J 1	

3. Total estimated time (hours/semester)

4	distribution: Lecture		Practicals/Tutorials	
56	Lecture		Practicals/Tutorials	
ıdy				hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				
3.2.2. Research in library, study of electronic resources, field research				
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				
3.2.4. Preparation for exam				4
3.2.5. Other activities				
,	56 dy ourse	4 Lecture 56 Lecture dy ourse notes, manuals, lecture ectronic resources, field resea	4 Lecture 56 Lecture dy ourse notes, manuals, lecture notes, ectronic resources, field research	4 Lecture Practicals/Tutorials 56 Lecture Practicals/Tutorials dy ourse notes, manuals, lecture notes, bibliography ectronic resources, field research

3.3. Total hours of individual study	15
3.4. Total hours per semester	75
3.5. ECTS	3

4. Prerequisites (if necessary)

4.1. curriculum	-
4.2. competences	-

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	-
5.2. for practicals/tutorials	Scientific computing laboratory

6. Specific competences acquired

¹⁾ deepening (DA), speciality/fundamental (DS); 2) compulsory (DI), elective (DO), optional (DFac)

Professional	Identify and use appropriately theoretical and computational methods which describe real
competences	physical systems
	Solve the physics problems which are described mathematically by differential and integral equations
	Apply creatively the knowledge acquired in order to understand and model real physical
	systems
	Communicate and analyze information of a didactic, scientific and popular character in the
	field of physics
Transversal	Efficient use of information sources and resources for communication and training, in
competences	Romanian and another language used internationally
	Carrying out professional tasks effectively, respecting the legislation, ethics and deontology
	specific to the field.

7. Course objectives

7.1. General objective	Understanding theoretically and computationally the models which
-	describe real physical systems
7.2. Specific objectives	Detailed study of some physical systems of utmost scientific interest
	Understanding how these systems are modelled
	Forming a creative and autonomous way of thinking

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Bibliography:		
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Bibliography:		
8.3 Laboratory	Teaching and learning techniques	Observations
Bibliography:		
8.4 Project	Teaching and learning techniques	Observations
Depending on the laboratory/research center which she/he selects, the student will choose a research project from a sub-domain of theoretical and / or computational physics or their applications. Examples of dedicated projects this semester: - Calculation of improper integrals using Monte-Carlo methods - The discrete fractional Fourier transform and its applications in physics - Mathematical models used in the study of quasicrystals - Representations of symmetry groups and applications - Quantum computers and quantum algorithms In addition to the extended list of research topics of the centers of the faculty, students have available		

projects that they can carry out within the	
collaboration agreements that the faculty has with	
research institutes (for example: Horia Hulubei	
National Institute for Physics and Nuclear	
Engineering The National Institute for Laser,	
Plasma & Radiation Physics etc.).	

Bibliography - sample:

- 1. D.P. Landau şi K. Binder, *A guide to Monte Carlo simulations in statistical physics*, Cambridge University Press, 2014.
- 2. J.B. Anderson, *Quantum Monte Carlo. Origins, development, applications*, Oxford University Press, 2007.
- 3. T. Pang, An introduction to Quantum Monte Carlo methods, Morgan & Claypool Publishers, 2016
- 4. A. Zee, Group theory in a nutshell for physicist, Princeton University Press, 2017
- 5. A.O. Pittenger, An introduction to quantum computing algorithms, Birkhauser, 2001

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of the discipline allows the student to develop skills and abilities for modeling and/or experimental investigation of the various physical phenomena studied in laboratories/research centers and their applications, in order to integrate them in specific activities of research institutes and companies in the field of Theoretical and Computational Physics, as well as in education.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture			
10.5.1. Tutorials			
10.5.2 Laboratory			
10.5.3 Project	- Attendance - Clarity, coherence and brevity of the exposure of the acquired knowledge and the results obtained - The correct use of models, formulas and relations of calculation; - Correctly applying specific methods of solving for the given problem and interpreting the numerical results;	Colloquium	100%

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

At least 50% of exam score.

Date 10.06.2019

Course coordinator name(s) and signature(s)

Prof. Dr. Virgil Băran

Assoc. Prof. Dr. Alexandru Nicolin Lect. Dr. Roxana Zus

Date of approval

Head of Department

Prof.dr. Virgil Baran

DI.201.FTC Introduction to quantum theory of fields

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

- Course unit									
2.1. Course unit	. Course unit title Introduction to quantum theory of fields								
2.2. Teacher Prof. dr. Virgil Baran/ Lect. dr. Roxana Zus									
2.3. Tutorials/Pr	2.3. Tutorials/Practicals instructor(s) Lect. dr. Roxana Zus								
2.4. Year of		2.5.		2.6	6. Type of		2.7. Type	Content ¹⁾	DS
study	II	Semester	1	eva	aluation	Е	of course		
							unit		
								Type ²⁾	DI
	l .		1	l			l	l .	

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					25
3.2.2. Research in library, study of electronic resources, field research					30
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					35
3.2.4. Preparation for exam					4
3.2.5. Other activities				0	

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Electrodynamics, Theory of relativity
4.2. competences	Knowledge about: mechanics, algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

6. Specific competences acquired

Professional competences	 Identify and proper use of the main physical laws and principles in a given context: the use of the concepts of the quantum field theory Solving problems of physics under given conditions Use of the physical principles and laws for solving theoretical or practical problems with qualified tutoring Rigorous knowledge of quantum theory, concepts, notions and problems in the area of particle physics Ability to use this knowledge in interpretation of experimental result and understand experiments at CERN
Transversal competences	 Efficient use of sources of information and communication resources and training assistance in a foreign language Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

7. Course objectives	
7.1. General objective	Understanding peculiarities of physical properties of quantum fields. Ability to connect physical concepts to experimental information in particle physics.
7.2. Specific objectives	Gain the ability to work with theoretical methods of quantum fields theory Acquire the skills to describe and calculate the physical properties of quantum fields and their interactions.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Fundamental properties of elementary particles. Relevant experimental facts. Orders of magnitude in elementary particle physics, dimensional analysis.	Systematic exposition - lecture. Examples	2 hours
The Lorentz (LG) and Poincare (PG) groups: definition and basic properties. Generators and Lie algebra of the Lorentz and Poincare groups. Finite irreducible representations of LG and classification of classical fields. Scalar, vectorial, spinorial fields.	Systematic exposition - lecture. Examples	2 hours
Variational principle for classical fields and Noether theorem. Dynamical invariants.	Systematic exposition - lecture. Examples	2 hours
Free fields: Klein-Gordon field, Weyl field, Dirac field, Majorana field, Maxwell field, Proca Field. Frequency decomposition of the fields. Spin and charge.	Systematic exposition - lecture. Examples	8 hours
Quantization of the fundamental fields, elementary particles, commutation relations, spin-statistics theorem.	Systematic exposition - lecture. Examples	4 hours
Local gauge invariance and interaction. Spontaneous breaking of symmetries. Goldstone model. Higgs mechanism.	Systematic exposition - lecture. Examples	4 hours

Interacting quantum fields. Feynman diagrams.	Systematic exposition -	4 hours
Fundamentals of renormalization.	lecture. Examples	4 hours

Bibliography:

- 1. M. Maggiore, A modern introduction to Quantum Field Theory, Oxford University Press, 2005.
- 2. M.E. Peskin, D.V. Schroeder An Introduction to Quantum Field Theory, Advanced Book Program, Addison-Wesley Publishing Company, 1995.
- 3. N.N. Bogoliubov, D.V. Shirkov, Introduction to The Theory of Quantized Fields, John Wiley and Sons, 1980.
- 4. S. Weinberg, *The quantum theory of fields*, Vol. I and Vol. II Cambridge University Press, 2005.
- 5. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, *Quantum Electrodynamics*, Perg. Press, 1989.
- 6. T.D. Lee, Particle Physics and Introduction to Field Theory, Hardwood Academic, 1981.
- 7. A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press, 2003.

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Lorentz Group algebra. Poincare group algebra. Pauli-Lubansky four-vectors. Casimir operators.	Problem solving	4 hours
Dynamical invariants for classical fields. Frequency decompositions.	Problem solving	4 hours
Commutation functions for free fields. Causality.	Problem solving	3 hours
Discrete symmetries of physical fields.	Problem solving	3 hours
Models for spontaneous global symmetry breaking. Goldstone theorem.	Problem solving	4 hours
Models for Higgs mechanism.	Problem solving	4 hours
Perturbative methods for interacting quantum fields. Renormalization.	Problem solving	6 hours

Bibliography:

- 1. Voja Radovanovich, Problem book in quantum field theory, Springer, 2005
- 2. C. Itzykson and J.B. Zuber, *Quantum Field Theory*, McGraw-Hill, New York, 1980
- 3. M. Kaku, Quantum Field Theory: A Modern Introduction, Oxford University Press, 1993
- 4. F. Mandl and G. Show, *Quantum Field Theory*, New York, 1999

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test and oral examination	60%
10.5.1. Tutorials	- Ability to use specific problem solving methods	Homeworks	40%
10.6. Minimal requiremen	nts for passing the exam		

Requirements for mark 5 (10 points scale)

At least 50% of exam score and of homeworks.

Date
10.06.2019

Teacher's name and signature

Prof. dr. Virgil Băran Lect. dr. Roxana Zus

Date of approval

Practicals/Tutorials instructor(s) name(s) and signature(s)

Lect. dr. Roxana Zus

Head of Department

Prof.dr. Virgil Baran

DI.203.FTC Relativistic quantum mechanics and Quantum electrodynamics

1. Study program

University of Bucharest
Faculty of Physics
Department of Theoretical Physics, Mathematics, Optics, Plasma
and Lasers
Physics
Master of Science
Theoretical and Computational Physics (in English)
Full-time study

2. Course unit

. Course unit									
2.1. Course unit title Relativistic quantum mechanics and Quantum electrodynamics							iics		
2.2. Teacher					Lect. dr. Cristian	Stoica	ı	-	
			Conf. dr. Madalir	na Boo	a				
2.3. Tutorials/Pra	acticals	instructor(s)			Lect. dr. Cristian	Stoica	ı		
`,'				Conf. dr. Madalir	na Boo	a			
2.4. Year of		2.5.		2.6	6. Type of		2.7. Type	Content ¹⁾	DS
study	II	Semester	I	eva	aluation	Е	of course		
							unit		
								Type ²⁾	DI

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	29
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					30
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					30
3.2.4. Preparation for exam					4
3.2.5. Other activities				0	

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

Ξ.		
	4.1. curriculum	Quantum Mechanics, Electrodynamics and theory of relativity, Equations of
		mathematical physics
	4.2. competences	Solving of problems in quantum mechanics, higher mathematics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Computer, Video projector
5.2. for practicals/tutorials	Computer, Video projector

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

6	Specific	competences	acquired

	tenees acquired
Professional competences	Identify and proper use of the main physical laws and principles in a given context; Identify and proper use of the main physical laws and principles of relativistic quantum mechanics and electrodynamics. Using in a creative way of the knowledge acquired in modeling of processes in relativistic quantum mechanics and electrodynamics. Disemination and analyzing of the scientific information in physics Using and development of specific software tools for numerical and analytical calculations in QED processes
Transversal competences	Efficient use of sources of information and communication resources and training assistance in a foreign language. Carrying out professional tasks in an efficient and responsible manner, in compliance with the specific legislation, ethics and deontology.

7. Course objectives

. Course objectives			
7.1. General objective	-Understanding the fundamental aspects related to the study of quantum		
	mechanics. Training capacities to approach and solve specific problems.		
	Developing analytics skills of calculation.		
7.2. Specific objectives	- Understanding the formalism of relativistic quantum mechanics and of		
	quantum electrodynamics		
	- Understanding the properties of Dirac equation solutions		
	- Understanding the physical implications of the mathematical properties		
	of Dirac equation solutions (spin, the positron existence)		
	- Understanding of the quantization methods		
	- Description of some fundamental processes în quantum		
	electrodynamics		
	- Developing the capability to analyse and compare diverse phenomena,		
	starting from basic principles		
	- Obtaining a good theoretical understanding of the studied problems		
	- Developing the capability to use the theoretical knowledge to describe		
	some physical systems		

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Dirac equation. Bispinors. Dirac matrices. The Pauli theorem. The relativistic invariance of Dirac equation.	Systematic exposition - lecture. Examples	4 hours
Lorentz transformations; the transformation of the solutions of Dirac equation. Continuous transformations (rotations, special Lorentz transformations) and discrete transformations (spatial and temporal inversion)	Systematic exposition - lecture. Examples	4 hours
Basic solutions of Dirac equation for the free particle. Plane waves. Positive and negative frequencies. Spin ½. Projection operators. The helicity.	Systematic exposition - lecture. Examples	4 hours
Charge conjugation. Transformation of characteristic quantities to charge conjugation. The	Systematic exposition - lecture. Examples	2 hours

reinterpretation of the negative frequency states. The positron.		
The scalar field, the Klein-Gordon equation; fundamental solutions, quantization of the real scalar field. Creation and annihilation operators. The covariant form of the commutation relations. The normal and chronological product	Systematic exposition - lecture. Examples	3 hours
The electron-positron field. The Dirac Lagrange and Hamilton functions, The Dirac equation. Quantization of the electron-positron field. The electromagnetic interaction and the gauge invariance.	Systematic exposition - lecture. Examples	2 hours
The electromagnetic field. The covariant form of the electromagnetism laws. The Lagrange function of the electromagnetic field. Quantization of the electromagnetic field. Gupta-Bleuler conditions.	Systematic exposition - lecture. Examples	2 hours
Interacting fields. The interaction Hamiltonian în QED. The S matrix. Series expansion on the S matrix. Expansion of the S matrix. Wick theorem, Feynman diagrams and rules.	Systematic exposition - lecture. Examples	4 hours
Cross sections, examples for fundamental processes	Systematic exposition - lecture. Examples	3 hours

Bibliography:

- C. Stoica, Introducere in mecanica cuantica relativista, note de curs.
- F. Schwabl, Advanced Quantum Mechanics, Springer Verlag, 2005.
- W. Greiner, Relativistic Quantum Mechanics, Springer Verlag, 2000
- A. Wachter, Relativistic Quantum Mechanics, Springer, 2011
- F. Mandl, G. Shaw, Quantum Field Theory, John Wiley&Sons, 2010
- M. Peskin, D. Schroeder, An Introduction to Quantum Field Theory, Addison Wesley, 1996
- W. Greiner, J. Reinhardt, Quantum Electrodynamics, Springer, 2009
- J.M. Jauch, F. Rohrlich, The Theory of Photons and Electrons, Springer Verlag, 1980
- C. Itzykson, J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980

A.I. Akhiezer, V.B. Berestetskii, Quantum Electrodynamics, Interscience, 1965

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Properties of the Dirac matrices	Lecture. Problem solving.	4 hours
Bilinear covariants of Dirac bispinors.	T . D 11 1 1	4.1
Representations of Dirac matrices. Calculation of the traces.	Lecture. Problem solving.	4 hours
Completeness and orthogonality of the plane waves solutions of the Dirac equation	Lecture. Problem solving.	2 hours
Relativistic electron in constant magnetic field.	Lecture. Problem solving.	2 hours
Solutions of the 1D Dirac equation	Lecture. Problem solving.	2 hours
Complex scalar field and charge conservation	Lecture. Problem solving.	2 hours
The Feynman propagator for the Klein Gordon and Dirac equations	Lecture. Problem solving.	6 hours
The Feynman propagator for the electromagnetic field	Lecture. Problem solving. Examples.	2 hours
Calculation of cross section for some fundamental processes	Lecture. Problem solving.	4 hours
Bibliography:		

33

- 1. B. Thaller, The Dirac Equation, Springer Verlag, 1992
- 2. W. Greiner, Relativistic Quantum Mechanics, Springer Verlag, 2000
 - 3. W. Greiner, J. Reinhardt, Quantum Electrodynamics, Springer, 2009

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, academic, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	- coherence and clarity of exposition - correct use of equations/mathematical methods/physical models and theories - ability to indicate/analyse specific examples	Written test/oral examination	60%
10.5.1. Tutorials	- ability to use specific problem solving methods	Homeworks/written tests	40%

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

Correct solutions for all homeworks

At least 50% of exam score and 50% of total score.

Teacher's name and signature

Practicals/Tutorials instructor(s)

Date 25.06.2019 name(s) and signature(s)

Lect. dr. Cristian Stoica
Conf. dr. Madalina Boca

Lect. dr. Cristian Stoica
Conf. dr. Madalina Boca

Date of approval Head of Department

Prof.dr. Virgil Baran

DI.205.FTC Research activity (traineeship)

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2. Course unit									
2.1. Course title Research act				ivity (trainees	hip)				
2.2. Teacher			Virgil Băran	, Alexano	lru Nicolin, F	Roxana Zus			
2.3. Tutorials ins	structor(s	s)							
2.4. Practicals in	structor	(s)							
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DS
study	2	Semester	1	evalı	uation	V	of course	Type ²⁾	DI
							unit	71	

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	6	distribution: Lecture		Practicals/Tutorials	
3.2. Total hours per semester	84	Lecture		Practicals/Tutorials	
Distribution of estimated time for stu	ldy				hours
3.2.1. Learning by using one's own c	ourse	notes, manuals, lecture	notes	, bibliography	12
3.2.2. Research in library, study of el-	ectron	ic resources, field resea	arch		40
3.2.3. Preparation for practicals/tutor	ials/pr	ojects/reports/homewor	rks		10
3.2.4. Preparation for exam		•			4
3.2.5. Other activities					0
2.2 T-4-11	(3				

3.3. Total hours of individual study	62
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	-
4.2. competences	-

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	-
5.2. for practicals/tutorials	Scientific computing laboratory

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

6. Specific competences acquired

Professional competences	Identify and use appropriately theoretical and computational methods which describe the interaction of intense fields with matter
competences	Apply creatively the knowledge acquired in order to understand and model real physical
	systems
	Communicate and analyze information of a didactic, scientific and popular character in the
	field of physics
Transversal	Efficient use of information sources and resources for communication and training, in
competences	Romanian and another language used internationally
	Carrying out professional tasks effectively, respecting the legislation, ethics and deontology
	specific to the field.

7. Course objectives

- Course objectives	
7.1. General objective	Understanding theoretically and computationally advanced methods
	which describe the interaction of intense fields with matter
7.2. Specific objectives	Detailed study by analytical and numerical means of the interaction of
	intense fields with matter
	Understanding how these systems are modelled
	Forming a creative and autonomous way of thinking

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Bibliography:		
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Bibliography:		
8.3 Laboratory	Teaching and learning techniques	Observations
Bibliography:		
8.4 Project	Teaching and learning techniques	Observations
Depending on the laboratory/research center which she/he selects, the student will choose a research project from a sub-domain of theoretical and / or computational physics or their applications. Examples of dedicated projects this semester: - Study the interaction of intense and ultra-intense laser pulses with matter using particle-in-cell-type codes - The relativistic study of the interaction between the electromagnetic field and atomic systems - The study of ionization by scattering radiation on atoms (Compton effect on bound states) - Laser-assisted electron-ion (atom) scattering - Compton scattering and laser-assisted Mott scattering		

In addition to the extended list of research topics of
the centers of the faculty, students have available
projects that they can carry out within the
collaboration agreements that the faculty has with
research institutes (for example: Horia Hulubei
National Institute for Physics and Nuclear
Engineering The National Institute for Laser,
Plasma & Radiation Physics etc.).

Bibliography - sample:

- 1. P. Mulser și D. Bauer, *High power laser-matter interaction*, Springer, 2010.
- 2. R.W. Hockney și J.W. Eastwood, Computer simulations using particles, A. Hilger, 1988.
- 3. R. Dick, Advanced quantum mechanics. Materials and photons, Springer, 2016.
- 4. W. Greiner şi J. Reinhardt, Quantum electrodynamics, Springer, 2008.

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of the discipline allows the student to develop skills and abilities for modeling and/or experimental investigation of the various physical phenomena studied in laboratories/research centers and their applications, in order to integrate them in specific activities of research institutes and companies in the field of Theoretical and Computational Physics, as well as in education.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture			
10.5.1. Tutorials			
10.5.2 Laboratory			
10.5.3 Project	- Attendance - Clarity, coherence and brevity of the exposure of the acquired knowledge and the results obtained - The correct use of models, formulas and relations of calculation; - Correctly applying specific methods of solving for the given problem and interpreting the numerical results;	Colloquium	100%

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

At least 50% of exam score.

Date 10.06.2019

Course coordinator name(s) and signature(s)

Prof. Dr. Virgil Băran Assoc. Prof. Dr. Alexandru Nicolin

Lect. Dr. Roxana Zus

Date of approval

Head of Department

Prof.dr. Virgil Baran

DI.206.FTC Introduction to gravity theory and cosmology

1. Study program

1.1. University	University of Bucharest	
1.2. Faculty	Faculty of Physics	
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma	
	and Lasers	
1.4. Field of study	Physics	
1.5. Course of study	Master of Science	
1.6. Study program	Theoretical and Computational Physics (in English)	
1.7. Study mode	Full-time study	

2. Course unit

2.1. Course unit title Introduction to gravity theory and cosmology									
2.2. Teacher				Conf. dr. Radu Slobodeanu					
2.3. Tutorials/Practicals instructor(s)				Dr. Mihai Marciu					
2.4. Year of		2.5.		2.6	6. Type of		2.7. Type	Content ¹⁾	DS
study	II	Semester	IV	eva	aluation	E	of course		
							unit		
								Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

4	distribution: Lecture	2	Practicals/Tutorials	1/1
40	Lecture	20	Practicals/Tutorials	10/10
Distribution of estimated time for study				
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				
3.2.2. Research in library, study of electronic resources, field research				
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				
3.2.4. Preparation for exam				
3.2.5. Other activities				
	dy course ectron	4 Lecture 40 Lecture dy course notes, manuals, lecture ectronic resources, field research	4 Lecture 2 40 Lecture 20 dy course notes, manuals, lecture notes ectronic resources, field research	4 Lecture 2 Practicals/Tutorials 40 Lecture 20 Practicals/Tutorials dy course notes, manuals, lecture notes, bibliography ectronic resources, field research

3.3. Total hours of individual study	81
3.4. Total hours per semester	125
3.5. ECTS	5

4. Prerequisites (if necessary)

I Telequisites (II fie	<i>(22341)</i>	
4.1. curriculum	Real and Complex Analysis, Algebra, Differential Equations, Equations of	
	Mathematical Physics, Classical Mechanics, Classical Electrodynamics, Relativistic	
	Quantum Electrodynamics, Special Relativity	
4.2. competences	Knowledge about:	
	- Classical and Quantum Electrodynamics, Relativistic Quantum Electrodynamics,	
	Special Relativity	
	- Differential and integral calculus, partial differential equations, special functions,	
	orthogonal polynomials	
	-Analytical formalism of classical mechanics; the principle of least action;	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Computer, Video projector
	Lecture notes
	Bibliography

5.2. for practicals/tutorials	Computer, Video projector
	Lecture notes
	Bibliography

6. Specific competences acquired

o. Specific compe	ichees acquireu
Professional	
competences	C1 Identify and proper use of the main physical laws and principles in a given context.
	C1.1 Deduction of working formulas for calculations of physical quantities using appropriate principles and laws of physics.
	C1.2 Description of physical systems, using theories and specific tools (theoretical and
	experimental models, algorithms, schemes, etc.)
	C1.3 Use of the physical principles and laws for solving theoretical or practical problems
	with qualified tutoring.
	- Rigorous knowledge of general relativity theory, concepts, notions and problems
	- Ability to use this knowledge in various branches of physics.
Transversal	CT3 Efficient use of sources of information and communication resources and training
competences	assistance in a foreign language.

7. Course objectives

. Course objectives				
7.1. General objective	- Understanding the fundamental aspects related to the study of general			
	relativity and cosmology. Training capacities to approach and solve			
	specific problems which require relativistic calculus. Developing			
	analytical and creative skills for questioning and solving open problems in			
	the area of general relativity and cosmology.			
7.2. Specific objectives	- Describing and understanding the current evolution of the known			
	Universe and the basic general observables aquired through astrophysical			
	observations.			
	- Assimilation of formalism of general relativity theory: the physical			
	principles of general relativity and various mathematical aspects			
	describing the theory.			
	- Understanding the physical features associated to different relativistic			
	systems: black holes, neutron stars, gravitational waves.			
	- Acquire the skills to describe and calculate the physical properties of			
	relativistic and cosmological systems.			
	- Developing the ability to work in a team			

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
The principles of special relativity and the Minkowski space	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	2 hours
2. Manifolds and differential forms	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	2 hours
3. Curvature, parallel transport and covariant derivatives, geodesic equations	Systematic exposition - lecture. Heuristic conversation. Critical analysis. Examples	2 hours
4. Einstein's equations and the variational formulation of general relativity	Systematic exposition - lecture. Heuristic	2 hours

sis. Examples matic exposition - e. Heuristic resation. Critical sis. Examples matic exposition - e. Heuristic resation. Critical sis. Examples	
e. Heuristic resation. Critical sis. Examples matic exposition - e. Heuristic resation. Critical sis. Examples 2 hours	
e. Heuristic resation. Critical sis. Examples 2 hours	
matic exposition - e. Heuristic ersation. Critical sis. Examples 2 hours	
matic exposition - e. Heuristic ersation. Critical sis. Examples 2 hours	
matic exposition - e. Heuristic rrsation. Critical 2 hours	
sis. Examples	
ve	ure. Heuristic versation. Critical lysis. Examples tematic exposition - ure. Heuristic versation. Critical 2 hours 2 hours

- 1. S. Carroll, An Introduction to General Relativity: Spacetime and Geometry, Addison Wesley, 2003.
- 2. B. Schutz, A First Course in General Relativity, Cambridge University Press, 1985
- 3. S. Weinberg, Gravitation and Cosmology, Wiley, 1972.
- 4. C. Misner, K. S. Thorne, J.A. Wheeler. *Gravitation*, W.H. Freeman, 1973.
- 5. J. D. Walecka, Introduction to general relativit, World Scientific, 2007
- 6. R. Wald, General relativity, University of Chicago Press, 1984
- 7. N. Gray, A Student's Guide to General Relativity, Cambridge University Press, 2019
- **8.** C. G. Boehmer, *Introduction to General Relativity and Cosmology*, World Scientific Publishing Co., 2016
- **9. S.Nojiri, S.D.Odintsov, V.K.Oikonomou**, *Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution*, Physics Reports, 692, 2017

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Geometry in a four dimensional space-time: vectors, dual vectors and tensors. Basic properties of the Lorentz transformations. Description of the Lorentz and Poincare groups. Einstein's equivalence principle.	Problem solving. Guided work. Case study. Examples.	2 hours
The space-time metric; the Levi-Civita connection; derivation of the geodesic equations. The Riemann curvature tensor and the non-commutativity property of the covariant derivatives.	Problem solving. Guided work. Case study. Examples.	2 hours

Properties of the Riemann curvature tensor: the Bianchi identity. The Ricci, Weyl and Einstein tensors. Symmetries and Killing vectors for a specific metric. Applications.	Problem solving. Guided work. Case study. Examples.	2 hours
Einstein-Hilbert action and the principle of least action. Applications.	Problem solving. Guided work. Case study. Examples.	2 hours
Schwarzschild solution to Einstein's field equations. Applications.	Problem solving. Guided work. Case study. Examples.	2 hours
Tolman-Oppenheimer-Volkoff equations. Applications.	Problem solving. Guided work. Case study. Examples.	2 hours
Linearization of the Einstein's field equations. The gravitational wave equation. Plane wave solutions. Applications.	Problem solving.	2 hours
The Friedmann's equations. Applications.	Problem solving. Guided work. Case study. Examples.	2 hours
Derivation of the Klein-Gordon equations for scalar fields in curved space-time. The modified Friedmann relations.	Problem solving. Guided work. Case study. Examples.	2 hours
Modern extensions to general relativity based on curvature and Gauss-Bonnet scalars: f(R) and f(G) gravitational theories. Theoretical implications and numerical applications.	Problem solving. Guided work. Case study. Examples.	2 hours

- 1. S. Carroll, An Introduction to General Relativity: Spacetime and Geometry, Addison Wesley, 2003.
- 2. B. Schutz, A First Course in General Relativity, Cambridge University Press, 1985
- **3. S. Weinberg**, *Gravitation and Cosmology*, Wiley, 1972.
- 4. C. Misner, K. S. Thorne, J.A. Wheeler. *Gravitation*, W.H. Freeman, 1973.
- 5. J. D. Walecka, Introduction to general relativit, World Scientific, 2007
- **6.** R. Wald, General relativity, University of Chicago Press, 1984
- 7. N. Gray, A Student's Guide to General Relativity, Cambridge University Press, 2019
- **8. S.Nojiri, S.D.Odintsov, V.K.Oikonomou**, *Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution*, Physics Reports, 692, 2017
- **9.** C. G. Boehmer, *Introduction to General Relativity and Cosmology*, World Scientific Publishing Co., 2016

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences and abilities which are fundamental for a graduate student in the field of theoretical physics, corresponding to national and european/international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania, the European Union, or the United States of America. The contents are in line with the requirements/expectations of the main employers of the graduates (industry, research, academic, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	- coherence and clarity of exposition - correct use of equations/mathematical methods/physical models and theories - ability to indicate/analyse specific examples	Written test/oral examination	60%
10.5.1. Tutorials	ability to use specific problem solving methodsability to analyse the results	Homeworks/written tests	40%

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

At least 50% of exam score and 50% of total score.

Teacher's name and signature

Practicals/Tutorials instructor(s)

Date 25.06.2019 reacher's name and signature name(s) and signature(s)

Conf.dr. Radu Slobodeanu Dr. Mihai Marciu

Date of approval

Head of Department
Prof.dr. Virgil Baran

43

DI.208.FTC Research activity (traineeship)

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2. Course unit									
2.1. Course title]	Resear	ch act	ivity (trainees	hip)			
2.2. Teacher					Virgil Băran	, Alexano	dru Nicolin, F	Roxana Zus	
2.3. Tutorials ins	. Tutorials instructor(s)								
2.4. Practicals in	structor	(s)							
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DS
study	2	Semester	2	evalı	uation	V	of course	Type ²⁾	DI
							unit	-J F -	

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	18	distribution: Lecture		Practicals/Tutorials	
3.2. Total hours per semester					
	180	Lecture		Practicals/Tutorials	
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				30	
3.2.2. Research in library, study of electronic resources, field research				131	
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				30	
3.2.4. Preparation for exam				4	
3.2.5. Other activities			0		
2.2 T-4-11 f: -1:-: 11 -4-1-	101				

3.3. Total hours of individual study	191
3.4. Total hours per semester	375
3.5. ECTS	15

4. Prerequisites (if necessary)

4.1. curriculum	-
4.2. competences	-

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	-
5.2. for practicals/tutorials	Scientific computing laboratory

6. Specific competences acquired

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

Professional	Understand and use appropriately the test particle method used to solve transport equations
competences	Apply creatively the knowledge acquired in order to understand and model real physical
	systems
	Communicate and analyze information of a didactic, scientific and popular character in the
	field of physics
Transversal	Efficient use of information sources and resources for communication and training, in
competences	Romanian and another language used internationally
	Carrying out professional tasks effectively, respecting the legislation, ethics and deontology
	specific to the field.

7. Course objectives

7.1. General objective	Detailed presentation of the test particle methods which is used to solved
-	Boltzmann-Vlasov transport equation
7.2. Specific objectives	Study transport phenomena by computational means through the
	Boltzmann-Vlasov equation
	Understanding how these systems are modelled
	Forming a creative and autonomous way of thinking

8. Contents 8.1. Lecture [chapters]

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Bibliography:		
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Bibliography:		
8.3 Laboratory	Teaching and learning techniques	Observations
Bibliography:		
8.4 Project	Teaching and learning techniques	Observations
Depending on the laboratory/research center which she/he selects, the student will choose a research project from a sub-domain of theoretical and / or computational physics or their applications. Examples of dedicated projects this semester: - The study of collective nuclear modes and the dynamics of nuclear fusion in transport approaches based on Vlasov equations; testing the validity of different equations of state of nuclear matter - Description of nuclear fragmentation and identification of new fragmentation mechanisms In addition to the extended list of research topics of the centers of the faculty, students have available projects that they can carry out within the collaboration agreements that the faculty has with research institutes (for example: Horia Hulubei National Institute for Physics and Nuclear		

Engineering The National Institute for Laser,	
Plasma & Radiation Physics etc.).	

Bibliography - sample:

- 1. K. Langanke, J.A. Maruhn și S.E. Koonin, Eds., Computational Nuclear Physics 2. Nuclear Reactions, Springer, 1993.
- 2. M.R. Feix și P. Bertrand, A universal model: The Vlasov equation, Transport Theory and Statistical Physics 34, 7-62 (2005)

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of the discipline allows the student to develop skills and abilities for modeling and/or experimental investigation of the various physical phenomena studied in laboratories/research centers and their applications, in order to integrate them in specific activities of research institutes and companies in the field of Theoretical and Computational Physics, as well as in education.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture			
10.5.1. Tutorials			
10.5.2 Laboratory			
10.5.3 Project	- Attendance - Clarity, coherence and brevity of the exposure of the acquired knowledge and the results obtained - The correct use of models, formulas and relations of calculation; - Correctly applying specific methods of solving for the given problem and interpreting the numerical results;	Colloquium	100%

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

At least 50% of exam score.

Course coordinator name(s) and signature(s)

Date 10.06.2019

Prof. Dr. Virgil Băran

Assoc. Prof. Dr. Alexandru Nicolin

Lect. Dr. Roxana Zus

Date of approval

Head of Department

Prof.dr. Virgil Baran

Elective Courses

DO.104.1.FTC Nonlinear dynamics, chaos, physics of complex systems

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course title		1	Nonlinear dynamics, chaos, physics			of complex	systems		
2.2. Teacher Assoc. Prof. Alex		Assoc. Prof. Alexa	ssoc. Prof. Alexandru Nicolin, Assoc. Prof. Mihai Dondera						
2.3. Tutorials instructor(s)			Assoc. Prof. Alexandru Nicolin, Assoc. Prof. Mihai Donder			dera			
2.4. Practicals in	2.4. Practicals instructor(s) Assoc. Prof. Alex		Assoc. Prof. Alexa	. Prof. Alexandru Nicolin, Assoc. Prof. Mihai Dondera			dera		
2.5. Year of		2.6.	2.7. Type of			2.8. Type	Content ¹⁾	DS	
study	1	Semester	r 1 evaluation		E	of course	Type ²⁾	DO	
						unit	71		

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study				hours	
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				30	
3.2.2. Research in library, study of electronic resources, field research					30
3.2.3. Preparation for practicals/tutorials/projects/reports/homework				30	
3.2.4. Preparation for exam				4	
3.2.5. Other activities				0	

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

. Trered distres (if itee	
4.1. curriculum	Analytical mechanics, Thermodynamics and Statistical Physics
4.2. competences	Working with software packages which do not require a license for data analysis and
	data processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for practicals/tutorials	Scientific computing laboratory

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

6. Specific competences acquired

Professional	• Understanding the properties of real fluids. Presentation of the Navier-Stokes equations.
competences	The study of the phenomenon of period doubling and the sensitivity of the initial
	conditions
	• Understanding the properties of Lyapunov exponents and the appearance of chaotic
	behavior, with applications on shells type models that describe hydrodynamic turbulence
	and Lorenz model
	Understanding the numerical methods used to solve nonlinear differential equations
	• Understanding how fractal distributions appear in physical, economic, social systems
	Understanding the process of critical self-organization in complex systems
Transversal	• Efficient use of scientific information resources and of communication and of resources
competences	for professional formation in English.
	• Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

7. Course objectives

· course objectives	
7.1. General objective	Presentation of the basic elements, analytical and computational,
	concerning nonlinear dynamics, chaos, and complex systems
7.2. Specific objectives	Study of sets of nonlinear differential equations of physical interest that
	exhibit chaotic behavior
	Study of numerical methods that can describe the chaotic solutions of
	nonlinear differential equations
	Study of simplified models that capture the properties of complex systems

8. Contents

8.1. Lecture	Teaching techniques	Observations/ hours
Fluid dynamics and turbulence. Historical framework and physico-mathematical foundations.	Systematic exposition - lecture. Examples	2 hours
The emergence of turbulence and the theory of dynamic systems. Presentation of the logistics application. Period doubling and the road to chaos. Lyapunov exponent for discrete systems. Feigenbaum numbers. Presentation of the tent and Henon maps.	Systematic exposition - lecture. Examples	4 hours
Presentation of Navier-Stokes equations and shell models (especially Gledzer-Ohkitani-Yamada). Lyapunov exponent for continuous systems. The study of energy conservation and helicity.	Systematic exposition - lecture. Examples	6 hours
Presentation of Lorenz equations. Sensitivity to initial conditions. Strange attractors. The Rössler system.	Systematic exposition - lecture. Examples	4 hours
Presentation of Runge-Kutta numerical methods (explicit and implicit). Volume conservation in phase space.	Systematic exposition - lecture. Examples	4 hours
Presentation of the sandpile model. Self-organized criticality. Fractal distributions. Applications in economics, sociology, astrophysics.	Systematic exposition - lecture. Examples	4 hours
Presentation of complex networks, especially topology, dynamics, and universality. Basic principles of economics.	Systematic exposition - lecture. Examples	4 hours
Bibliography:		

- 1. S.H. Strogatz, *Nonlinear dynamics and chaos. With applications to physics, biology, and engineering*, CRC Press, 2015.
- 2. M. Tabor, Chaos and integrability in nonlinear dynamics. An introduction, Wiley, 1989.
- 3. T. Bohr, M.H. Jensen, G. Paladin și A. Vulpiani, *Dynamical systems approach to turbulence*, Cambridge University Press, 2005.
- 4. M. Aschwanden, Self-organized criticality in astrophysics. The statistics of nonlinear processes in universe, Springer, 2011.
- 5. S. Lynch, Dynamical systems with applications with Python, Birkhauser, 2018.
- 6. R. Hilborn, *Chaos and nonlinear dynamics*. An introduction for scientists and engineers, Oxford University Press, 2001.
- 7. P. Bak, How nature works. The science of self-organized criticality, Copernicus, 1999.
- 8. A.L. Barabasi, *Network science*, Cambridge University Press, 2016.
- 9. R.N. Mantegna și H.E. Stanley, *An introduction to econophysics. Correlations and complexity in finance*, Cambridge University Press, 2007.

8.2. Tutorials	Teaching and learning techniques	Observations
Computing Reynolds numbers.	Lecture. Problem solving	2 hours
Deriving shell-like equations from the Navier-Stokes equation.	Lecture. Problem solving	2 hours

- 1. T. Bohr, M.H. Jensen, G. Paladin și A. Vulpiani, *Dynamical systems approach to turbulence*, Cambridge University Press, 2005.
- 2. L. Biferale, *Shell models of energy cascade in turbulence*, Annual Review in Fluid Mechanics **35**, 441 (2003).

8.3 Laboratory	Teaching and learning techniques	Observations
Determination of the two Feigenbaum constants in the numerical study of the Henon application.	Supervised practical activity	2 hours
Numerical solution of Lorenz equations. Runge- Kutta methods. Numerical algorithms for the Lyapunov exponent.	Supervised practical activity	6 hours
Numerical solution of equations that describe shell models. The Kolmogorov spectrum	Supervised practical activity	6 hours
Numerical study of the sandpile model and the Bak-Sneppen macroevolution model. Fractal distributions. Self-organized criticality.	Supervised practical activity	6 hours
The study of complex networks. The model of preferential attachment. Distributions of words in Romanian.	Supervised practical activity	2 hours
Financial markets. Hurst exponent calculation for time series describing the evolution of the exchange rate of currencies. Solving the Black-Scholes equation.	Supervised practical activity	2 hours

Bibliography:

- 1. S.H. Strogatz, *Nonlinear dynamics and chaos. With applications to physics, biology, and engineering*, CRC Press, 2015.
- 2. W.-H. Steeb, The nonlinear workbook: chaos, fractals, etc., World Scientific, 2005.

,	, , , ,	,
8.4 Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

In order to sketch the contents, to choose the teaching/learning methods, the coordinator of the course consulted the content of similar disciplines taught at Romanian universities and abroad. The content of the discipline is according to the requirements of employment in research institutes in physics and materials science, as well as in education (according to the law).

10. Assessment

V. 1 133C33IIICIIC			
Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test/oral examination	60%
10.5.1. Tutorials	- Ability to use specific problem- solving methods	Homework	10%
10.5.2 Laboratory	- Ability to use specific problem- solving methods	Colloquium	30%
10.5.3 Project			
10.6. Minimal requireme	ents for passing the exam		

Requirements for mark 5 (10 points scale)

At least 50% of exam score and of homeworks.

Practicals/Tutorials instructor(s)

Date

Teacher's name and signature

name(s) and signature(s)

11-VI-2019

Assoc. Prof. Alexandru Nicolin,

Assoc. Prof. Alexandru Nicolin, Assoc.

Assoc. Prof. Mihai Dondera

Prof. Mihai Dondera

Head of Department

Date of approval

Prof. Virgil Băran

DO.104.2.FTC Special chapters of mathematics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

_	· course unit									
	2.1. Course unit	title	Special chapters of mathematics							
	2.2. Teacher Assoc.prof. dr. Radu Slobodeanu									
	2.3. Tutorials/Pra	acticals	instructor(s)			Lecturer dr. Adri	an Sto	oica		
	2.4. Year of		2.5.		2.6	6. Type of		2.7. Type	Content ¹⁾	DS
	study	I	Semester	2	eva	aluation	Е	of course		
								unit		
									Type ²⁾	DO
								l		

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study				hours	
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography			30		
3.2.2. Research in library, study of electronic resources, field research				30	
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				30	
3.2.4. Preparation for exam			4		
3.2.5. Other activities			0		

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

	<i>j</i>)
4.1. curriculum	Algebra, Analysis, Quantum mechanics
4.2. competences	Knowledge about: mechanics, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

6. Specific competences acquired

Professional	Knowledge and understanding of complex functions derivatives, contour integrals and
competences	Laurent series; applications to calculus of definite integrals; Knowledge and understanding of special functions and orthogonal polynomials for use in physics problems. Ability to use modern mathematical concepts in advanced physics.
Transversal competences	 Efficient use of sources of information and communication resources and training assistance in a foreign language Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

7. Course objectives	
7.1. General objective	Understanding of Fourier's transform; ability to use it in
	applications.
	- Understand modern methods of mathematics in physics
7.2. Specific objectives	Development of the skill to apply mathematical models for
	modelling various physical processes
	Acquire the appropriate understanding of the connections between
	mathematics and physics

8. Contents

o. Contents			
8.1. Lecture [chapters]	Teaching techniques	Observations/ hours	
Differentiable manifolds. Tangent spaces. Vector	Systematic exposition -	6 1, 2, 2, 2	
fields. Differential forms.	lecture. Examples	6 hours	
Lie groups and Lie algebra.	Systematic exposition -	8 hours	
	lecture. Examples	8 Hours	
Fibre bundles. Applications	Systematic exposition -	6 hours	
	lecture. Examples	o nours	
Connection in a bundle. Parallel transport.	Systematic exposition -	8 hours	
Curvature.	lecture. Examples	8 Hours	
Bibliography:			
C.J.Isham, Modern Differential Geometry for	r Physicists, World Scientific,	, 2001	
8.2. Tutorials [main themes]	Teaching and learning	Observations/hours	
	techniques	Observations/flours	
Fourier transform. Convolution product and its			
Fourier transform. Fourier transform of generalized	Problem solving	4 hours	
functions. Dirac's distribution.			
Complex functions: derivatives and contour	Problem solving	4 hours	
integrals.	Froblem solving	4 nodis	
Taylor and Laurent series. Residues. Examples.			
Calculus of definite integrals by using residue	Problem solving	4 hours	
theorem			
Tensor calculus. Tensor products.	Problem solving	4 hours	
Orthogonal polynomials and special functions.			
Hypergeometric polynomials. Legendre's	Droblem solving	4 hours	
polynomials and associated functions. Laguerre's	Problem solving	4 nours	
polynomials. Hermite's polynomials			

Frames and orthonormal bases. The resolution of identity. Systems of coherent states. Quantification based on systems of coherent states or frames.	Problem solving	4 hours
---	-----------------	---------

- 5. G. Teschl, Mathematical Methods in Quantum Mechanics with Applications to Schrodinger Operators, AMS 2009
- 6. M. Stone and P. Goldbart, Mathematics for Physicists, Cambridge University Press 2009

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Date of approval

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark		
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test and oral examination	60%		
10.5.1. Tutorials	- Ability to use specific problem solving methods	Homeworks	40%		
10.6. Minimal requirements for passing the exam					
Requirements for mark 5 (10 points scale)					

At least 50% of exam score and of homeworks.

Practicals/Tutorials instructor(s)

name(s) and signature(s) Teacher's name and signature Date

10.06.2019 Assoc.prof.dr. Radu Slobodeanu Lecturer dr. Adrian Stoica

Head of Department

Prof.dr. Virgil Baran

DO.107.1.FTC Interaction of laser radiation with matter

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title Interaction of laser radiation wi					liation with matte	r			
2.2. Teacher				Conf. dr. Madalina Boca					
2.3. Tutorials/Pr	2.3. Tutorials/Practicals instructor(s) Conf. dr. Madalina Boca								
2.5. Year of		2.6		2.7	7. Type of		2.8. Type	Content ¹⁾	DS
study	I	Semester	II	eva	aluation	Е	of course		
							unit		
								Type ²⁾	DO
		l.							

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					30
3.2.4. Preparation for exam					4
3.2.5. Other activities					0

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

-	Treat quisites (in interesting)				
	4.1. curriculum	Electrodynamics and relativity theory, Quantum mechanics			
4.2. competences Nur		Numerical / using of approximation methods for solving differential equations			

5. Conditions/Infrastructure (if necessary)

e conditions, initiasti detaile (ii	necessary)
5.1. for lecture	Computer, Video projector
5.2. for practicals/tutorials	Computer, Video projector

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

6. Specific competences acquired

Professional		
competences	- Identify and proper use of the main physical laws and principles in a given context.	
	Identify and proper use of specific laws for simple systems in interaction with the	
	electromagnetic field.	
	-solving pf physics problems in given conditions	
	- Using the acquired knowledge for understanding / modeling of processes in	
	electromagnetic fields	
	- Communication and analysis of didactic, scientific and general information in physics	
Transversal	- Efficient use of sources of information and communication resources and training	
competences	assistance in a foreign language.	
	- accomplishment of professional tasks in an professional way, assuming an ethical conduct	
	in scientific research;	

7. Course objectives

7. Course objectives	
7.1. General objective	Presentation of the main processes in the interaction of radiation with the substance
7.2. Specific objectives	Understanding the classical / quantum theory of the interaction of
	electromagnetic radiation with matter
	- Understanding the evolution in time of some systems in interaction with
	the electromagnetic field
	- The ability to use approximate / numerical mathematical models in the
	analysis of the interaction of electromagnetic radiation with matter

8. Contents

Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Physical processes in electromagnetic fields: overview.	Systematic exposition - lecture. Examples	2 hours
Electromagnetic waves and photons; introduction	Systematic exposition - lecture. Examples	2 hours
Classical description of the electromagnetic field, plane wave, Gaussian modes	Systematic exposition - lecture. Examples	4 hours
Description of the electromagnetic field in quantum theory	Systematic exposition - lecture. Examples	4 hours
Free particle in electromagnetic field: classical / quantum description.	Systematic exposition - lecture. Examples	4 hours
Radiation interaction with atomic systems: amplitude / transition rate, effective sections.	Systematic exposition - lecture. Examples	4 hours
Multiphotonic processes, perturbative / non-perturbative description	Systematic exposition - lecture. Examples	2 hours
Radiation scattering (Rayleigh, Raman, Compton).	Systematic exposition - lecture. Examples	4 hours
Elements of quantum electrodynamics in intense fields	Systematic exposition - lecture. Examples	2 hours

Bibliography:

- M. Dondera, V. Florescu. Capitole de fizica atomica teoretica, Ed. UB, 2005.
- F.H.M. Faisal, *Theory of multiphotonic processes*, Plenum Press, 1987
- C. J. Joachain, N. Kylstra, R. M. Potvliege, *Atoms in intense laser fields*, Cambridge University Press, 2012.

• W. Greiner, Quantum Mechanics: Special Chapters, Springer, 1998						
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours				
Numerical / approximate solutions of the Maxwell equations	Lecture. Problem solving.	4 hours				
Motion of electrically charged particle in electromagnetic field, approximate / numerical solutions	Lecture. Problem solving.	6 hours				
Volkov solutions in non-relativistic quantum mechanics	Lecture. Problem solving.	8 hours				
Radiation reaction	Lecture. Problem solving.	4 hours				
Perturbative description of the interaction of radiation with simple systems	Lecture. Problem solving.	4 hours				
Elements of Floquet theory	Lecture. Problem solving.	2 hours				

- 1. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions, Wiley-VCH Verlag, 2004.
- 2. J. D. Jackson Classical Electrodynamics (Wiley, 1962).
- 3. M. Boca, Lecture notes

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The contents and teaching methods were selected after an analysis of the contents of similar course units in the syllabus of other universities (LMU, KTH). The contents are in line with the requirements/expectations of the main employers of the graduates (research, academic, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 coherence and clarity of exposition correct use of equations/mathematical methods/physical models and theories ability to indicate/analyse specific examples 	Written test/oral examination	50%
10.5.1. Tutorials	- ability to use specific problem solving methods	Homeworks/written tests	50%

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

Solving of all homework,

Correct presentation of the subjects indicated for mark 5 in the final exam.

Date 25.06.2019 Teacher's name and signature

Practicals/Tutorials instructor(s)

name(s) and signature(s)

Conf. dr. Madalina Boca

Conf. dr. Madalina Boca

Date of approval

Head of Department Prof.dr. Virgil Baran

DO.107.2.FTC Quantum optics

1. Study program

1.1. University	ersity University of Bucharest	
1.2. Faculty	Faculty of Physics	
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma	
	and Lasers	
1.4. Field of study	Physics	
1.5. Course of study	Master of Science	
1.6. Study program	Theoretical and Computational Physics (in English)	
1.7. Study mode	Full-time study	

2. Course unit

2.1. Course unit	title	Quantum Optics							
2.2. Teacher	2.2. Teacher				Associate prof. Iu	ılia Gl	hiu		
2.3. Tutorials/Practicals instructor(s)			Associate prof. It	ılia Gl	hiu				
2.4. Year of		2.5.		2.6	o. Type of		2.7. Type	Content ¹⁾	DS
study	I	Semester	2	eva	aluation	E	of course		
							unit		
								Type ²⁾	DO

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					30
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					30
3.2.4. Preparation for exam					4
3.2.5. Other activities					0

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Optics, Algebra, Quantum mechanics
4.2. competences	

5. Conditions/Infrastructure (if necessary)

_		
	5.1. for lecture	Video projector
	5.2. for practicals/tutorials	

6. Specific competences acquired

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

Professional	• Identify and proper use of the main physical laws and principles in a given context: the use
competences	of the concepts of quantum optics
	Solving problems of physics under given conditions
	• Use of the physical principles and laws for solving theoretical or practical problems with
	qualified tutoring
	Rigorous knowledge of quantum theory, concepts, notions and problems in this area
	Ability to use this knowledge in various branches of physics
Transversal	Efficient use of sources of information and communication resources and training
competences	assistance in a foreign language
Î	

7. Course objectives

<u> </u>			
7.1. General objective	Understanding the fundamental aspects related to the study of quantum		
	optics		
7.2. Specific objectives	Assimilation of formalism of quantum optics.		
	Explaining the peculiar fenomena of quantum optics, which have no		
	classical analogue.		
	Acquire the skills to describe and calculate the physical properties of		
	quantum systems involved in the problems of quantum optics.		

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Quantization of the electromagnetic field	Systematic exposition - lecture. Examples	4 hours
The quasi-probability distributions in the phase space: the representation Glauber-Sudarshan, Husimi function and Wigner function	Systematic exposition - lecture. Examples	4 hours
Single-mode squeezed states: definition, properties, the representation in the phase space. Photon antibunching. Two-mode squeezed states	Systematic exposition - lecture. Examples	4 hours
The single-mode thermal state: the quasi- probability distributions	Systematic exposition - lecture. Examples	4 hours
The quantum description of the beam splitter. Applications	Systematic exposition - lecture. Examples	4 hours
Quantum communications using photons: quantum teleportation, quantum cryptography	Systematic exposition - lecture. Examples	4 hours
Interference phenomena with single and double photodetection. The experiment of Hong, Ou, Mandel. The Franson's experiment.	Systematic exposition - lecture. Examples	4 hours

Bibliography:

- 1. C. Gerry, P. Knight, *Introductory Quantum Optics*, Cambridge University Press, 2005.
- 2. M. O. Scully, M. S. Zubairy, *Quantum Optics*, Cambridge University Press, 2002.
- 3. Cohen-Tannoudji, Dupont-Roc, and Grynberg, Atom-Photon Interactions, Wiley, 1998.
- 4. D. F. Walls, G. J. Milburn, Quantum Optics, Springer Verlag, 1994.
- 5. C. W. Gardiner, *Quantum Noise*, Springer Verlag, 1991.
- 6. M. D. Al-Amri, M. M. El-Gomati, M. S. Zubairy (Editors), Optics in Our Time, Springer Open, 2016.

• • • • • • • • • • • • • • • • • • •					
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours			
The mixed states of a two-level quantum system. The Bloch sphere	Problem solving	4 hours			
Quantum correlation functions	Problem solving	4 hours			
Coherent states: definition, properties, the representation in the phase space	Problem solving	4 hours			

Entanglement. Condition that the two-photon state to be inseparable	Problem solving	4 hours
Bell inequalities in quantum optics	Problem solving	4 hours
The optical implementation of some quantum gates	Problem solving	4 hours
Quantum eraser	Problem solving	4 hours

- 1. C. Gerry, P. Knight, *Introductory Quantum Optics*, Cambridge University Press, 2005.
- 2. M. O. Scully, M. S. Zubairy, *Quantum Optics*, Cambridge University Press, 2002.
- 3. D. F. Walls, G. J. Milburn, Quantum Optics, Springer Verlag, 1994.

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Europe (Oxford University, Royal Institute of Technology - Stockholm). The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	- Clarity and coherence of exposition - Correct use of equations/mathematical methods/physical models and theories - The ability to give specific examples	Written test/oral examination	50%
10.5.1. Tutorials	- Ability to use specific problem solving methods	Homeworks	50%

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

At least 50% of exam score.

Date of approval

Practicals/Tutorials instructor(s)

Date Teacher's name and signature name(s) and signature(s) 11.06.2019

Associate prof. dr. Iulia Ghiu Associate prof. dr. Iulia Ghiu

Head of Department Prof.dr. Virgil Baran

DO.110.1.FTC Introduction to quantum theory of identical particles

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

- Course unit										
2.1. Course unit	title	Introduction t	theory of	identica	l parti	cles				
2.2. Teacher	2. Teacher			Prof. Dr.	Virgil E	3aran/	Assoc. prof. I	Dr. Mihai Dond	era	
2.3. Tutorials/Practicals instructor(s)			Lect. Dr.	Victor I	Dinu					
2.4. Year of		2.5.		2.6	6. Type of			2.7. Type	Content ¹⁾	DS
study	I	Semester	2	eva	aluation		Е	of course		
								unit		
									Type ²⁾	DO
L	1	1	1					l	l	

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					
3.2.2. Research in library, study of electronic resources, field research					
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					
3.2.4. Preparation for exam					
3.2.5. Other activities					

3.3. Total hours of individual study	65
3.4. Total hours per semester	125
3.5. ECTS	5

4. Prerequisites (if necessary)

•	· I rerequisites (if fice	cosury)
	4.1. curriculum	Quantum mechanics, Classical Statistical Mechanics, Equations of Mathematical
		Physics
	4.2. competences	Knowledge about: mechanics, thermodynamics, algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

_	, and a second a seco								
	5.1. for lecture	Video projector							
	5.2. for practicals/tutorials								

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

6. Specific competences acquired

Professional competences	 Identify and proper use of the main physical laws and principles in a given context: the use of the concepts of quantum many-body physics Solving problems of physics under given conditions Use of the physical principles and laws for solving theoretical or practical problems with qualified tutoring Rigorous knowledge of quantum theory, concepts, notions and problems in the area of many-body systems
	Ability to use this knowledge in various branches of physics
Transversal competences	 Efficient use of sources of information and communication resources and training assistance in a foreign language Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

1. Course objectives	
7.1. General objective	Understanding peculiarities of physical properties of quantum many-body
	systems.
	- Understanding occupation number representation of quantum
	mechanics
	- Knowledge and understanding of effects related to fermionic or bosonic
	nature of quantum particles
7.2. Specific objectives	Gain the ability to work with theoretical methods of quantum many-body
	systems
	Acquire the skills to describe and calculate the physical properties of
	quantum many-body systems involved in different physical conditions.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
The indistinguishability of quantum particles. Permutation operators. Particle exchange symmetry. Symmetrization postulate for identical quantum particles. Completely symmetric and antisymmetric quantum states.	Systematic exposition - lecture. Examples	2 hours
Occupation-number representation of quantum mechanics. Fock space.	Systematic exposition - lecture. Examples	2 hours
Creation and annihilation operators. Vacuum state. Fundamental algebraic relations for fermions and bosons creation/annihilation operators. Field operators. Definition and properties.	Systematic exposition - lecture. Examples	4 hours
One-body and two-body observables in many-body systems.	Systematic exposition - lecture. Examples	4 hours
Hartree-Fock approximation. Hartree-Fock method in occupation-number formalism. Density functional theory. Applications	Systematic exposition - lecture. Examples	6 hours
Coulomb interactions in many electron systems. Jellium model. Basic assumptions and Hamiltonian of the model.	Systematic exposition - lecture. Examples	4 hours

62

Ground state energy in the Hartree-Fock approximation. Hubbard's model in occupation-number formalism. Physical properties.		
Pairing interaction and superconductivity. Experimental observations and phenomenology of superconductivity. London's equations. Effective interaction between electrons and pairing Hamiltonian. Barden-Cooper-Schriffer (BCS) model. Properties. Bogoliubov-Valatin transformation. Quasiparticles. Pairing equations. Properties of superconductors.	Systematic exposition - lecture. Examples	6 hours

- 1. J.W. Negele, H. Orland, Quantum Many Particle Systems (Advanced Book Program)
- 2. P. Nozieres, Theory of Interacting Fermi systems (Advanced Book Program)
- 3. J.F. Annett, Superconductivity, Superfluidity and Condensates (Oxford University Press)
- 4. Fetter A.L., J.D. Walecka Quantum theory of Many Particle systems (McGraw Hill, New-York)
- 5. P.W. Anderson, Concepts in Solids, World Scientific, 1997
- 6.W. Nolting, Fundamentals of many-body physics, Springer 2009.

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Fermi gas in ground state: Fermi's sea, relationship between density and momentum. Applications.	Problem solving	2 hours
One-particle density matrix for fermion systems. Pair correlation function for fermions and bosons. Definition, properties, physical consequences.	Problem solving	4 hours
Observables of interest in terms on creation and annihilation operators: densities, currents.	Problem solving	4 hours
Hartree-Fock approximation: examples. Koopmans' theorem. Density functional theory. Hubbard model.	Problem solving	8 hours
Bogoliubov Theory of the Weakly Interacting Bose Gas	Problem solving	4 hours
Cooper pair problem. Phonon-electron interaction. Superconductivity: constant coupling function. Ground state energy. Derivation of gap equation. Physical interpretation.	Problem solving	6 hours

Bibliography: 1. P.W. Anderson, Concepts in Solids, World Scientific, 1997

- 2.W. Nolting, Fundamentals of many-body physics, Springer 2009.
- 3. P.A. Martin, F. Rothen, Many-body problems and quantum field theory, Springer, 2002

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
---------------	---------------------------	--------------------------	----------------------------------

10.4. Lecture	- Clarity and coherence of	Written test and oral			
	exposition	examination			
	- Correct use of the methods/ physical models		60%		
	- The ability to give specific				
	examples				
10.5.1. Tutorials	- Ability to use specific problem	Homeworks	40%		
	solving methods				
10.6. Minimal requirements for passing the exam					
Requirements for mark 5 (10 points scale)					
At least 50% of exam score and of homeworks.					

Date

Teacher's name and signature

Practicals/Tutorials instructor(s)
name(s) and signature(s)

10.06.2019

Prof. dr. Virgil Baran
Assoc. Prof.dr. Mihai Dondera

Lect. dr. Victor Dinu

Date of approval Head of Department

Prof.dr. Virgil Baran

DO.110.2.FTC Theory of critical phenomena

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit	title	Theory of critical phenomena							
2.2. Teacher Prof. Dr. Virgil Băran/ Assoc.prof. dr. Alexandru Nicolin				olin					
2.3. Tutorials/Pr	acticals	s instructor(s) Assoc.prof. dr. Alexandru Nicolin							
2.4. Year of		2.5.		2.6	o. Type of		2.7. Type	Content ¹⁾	DS
study	I	Semester	2	eva	aluation	E	of course		
							unit		
								Type ²⁾	DO
		1						l	

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study				hours	
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				20	
3.2.2. Research in library, study of electronic resources, field research					20
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				25	
3.2.4. Preparation for exam				4	
3.2.5. Other activities				0	

3.3. Total hours of individual study	65
3.4. Total hours per semester	125
3.5. ECTS	5

4. Prerequisites (if necessary)

	<i>-</i>
4.1. curriculum	Quantum mechanics, Quantum Statistical Physics, Electrodynamics
4.2. competences	Knowledge about: mechanics, algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

6. Specific competences acquired

	cines acquired
Professional	• Identify and proper use of the main physical laws and principles in a given context: the use
competences	of the concepts emerging from theory of phase transitions
	Solving problems of physics under given conditions
	• Use of the physical principles and laws for solving theoretical or practical problems with
	qualified tutoring
	• Rigorous knowledge of phase transitions, concepts, notions and problems in the area of critical phenomena
	*
	Ability to use this knowledge in interpretation of experimental result
	• Understanding the role of the interaction, of the particle nature and of the dimensionality
	over the dynamical properties
	• Developing the computational abilities and a sound theoretical knowledge of the studied
	problems
Transversal	Efficient use of sources of information and communication resources and training
competences	assistance in a foreign language
	• Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

7. Course objectives

- Course objectives			
7.1. General objective	Knowledge and description of physical properties of phase		
	transitions at the critical points		
	Understanding the universal behaviour, the role of the dimension		
	and of the symmetries.		
7.2. Specific objectives	Development of the skill to apply mathematical models and		
	numerical method for modelling various physical processes		
	Acquire the appropriate understanding of studied fundamental		
	mechanisms of phase transitions		

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Continuous phase transitions and critical points Critical phenomena in nature: liquid-gas phase transition, binary fluid, the ferromagnetic- paramagnetic transition, the transition to superconductivity, the He I-He II transition. Fundamental concepts: order parameter, critical exponents, correlation functions, scale invariance, classes of universality.	Systematic exposition - lecture. Examples	6 hours
Models for description of phase transitions Ising models in one, two and three dimensions. Networks models, XY model, Heisenberg model, Potts model, percolation model	Systematic exposition - lecture. Examples	8 hours
Mean-field theory for critical behaviour Theoretical framework. Landau theory. Critical exponents in Landau theory.	Systematic exposition - lecture. Examples	6 hours
Renormalization group method The basic principles of the method. Renormalization group transformations and recurrence relations.	Systematic exposition - lecture. Examples	8 hours
Bibliography:		

- 1. J.J. Binney, N.J. Dowrick, A.J. Fisher, M.E.J. Newman, *The Theory of Critical Phenomena. An introduction to the renormalization Group*, (Oxford UP 1995)
- 2. Leo P. Kadanoff, Statistical Physics. Statics, Dynamics and Renormalization. (World Scientific, 2001)

3. C. Domb, The Critical Point, (Taylor&Franciscs, 1996)

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
The Van der Waals model for the liquid-gas phase transition: critical exponents in the mean-field approximation.	Problem solving	4 hours
The transfer matrix. The Duality transformation. Onsager solution for Ising model in two dimensions.	Problem solving	4 hours
The renormalization group method for Ising model in two dimensions. The Monte-Carlo method for Ising model in three dimensions	Problem solving	4 hours
The Momentum-Shell Renormalization Group	Problem solving	4 hours
Percolation	Problem solving	4 hours
Fixed points of the renormalization group transformations: the physical meaning and properties. Linearized transformations around the fixed point. The origin of the scale behaviour. Renormalization group in differential form.	Problem solving	6 hours

Bibliography:

- 1. N. Goldenfeld, Lectures on phase transitions and the renormalization group (Adison-Wesley PC, 1992)
- 2. Franz Schwabl, Statistical mechanics, Springer-Verlag Berlin Heidelberg 2006

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test and oral examination	60%
10.5.1. Tutorials	- Ability to use specific problem solving methods	Homeworks	40%

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

At least 50% of exam score and of homeworks.

Date

Teacher's name and signature

Practicals/Tutorials instructor(s) name(s) and signature(s)

10.06.2019

Prof. dr. Virgil Baran

Assoc. Prof.dr. Alexandru Nicolin

Assoc.prof. dr. Alexandru Nicolin

Date of approval

Head of Department

Prof.dr. Virgil Baran

DO.111.1.FTC Quantum information and communication

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title Quantum Information and Communication									
2.2. Teacher Associate prof. Iulia Ghiu									
2.3. Tutorials/Pr	2.3. Tutorials/Practicals instructor(s) Associate prof. Iulia Ghiu								
2.4. Year of		2.5.		2.6	6. Type of		2.7. Type	Content ¹⁾	DS
study	I	Semester	2	eva	aluation	Е	of course		
							unit		
								Type ²⁾	DO
		ı					l		

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					20
3.2.2. Research in library, study of electronic resources, field research					20
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					25
3.2.4. Preparation for exam					4
3.2.5. Other activities					0

3.3. Total hours of individual study	65
3.4. Total hours per semester	125
3.5. ECTS	5

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Optics, Equations of Mathematical Physics
4.2. competences	Knowledge about: Algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

6. Specific competences acquired

Professional	• Identify and proper use of the main physical laws and principles in a given context: the use
competences	of the concepts of quantum information theory
	Solving problems of physics under given conditions
	• Use of the physical principles and laws for solving theoretical or practical problems with
	qualified tutoring
	Rigorous knowledge of quantum theory, concepts, notions and problems in this area
	Ability to use this knowledge in various branches of physics
Transversal	Efficient use of sources of information and communication resources and training
competences	assistance in a foreign language
_	

7. Course objectives

J		
7.1. General objective	Understanding the fundamental aspects related to the study of quantum	
	information processing	
7.2. Specific objectives	Assimilation of formalism of quantum information theory: concepts,	
	methods of transmiting, manipulating and storing of the quantum	
	information.	
	Explaining the peculiar fenomena of quantum information theory, which	
	have no classical analogue.	
	Acquire the skills to describe and calculate the physical properties of	
	quantum systems involved in the quantum information processing.	

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Definition of the qubit. Two-qubit systems. Entangles states. Einstein-Podolsky-Rosen paradox. Bell's inequalities	Systematic exposition - lecture. Examples	4 hours
The density operator for a spin-1/2 particle. The Bloch vector. The reduced density operator. Schmidt decomposition. Purifications	Systematic exposition - lecture. Examples	2 hours
Quantum teleportation. Many-to-many teleportation	Systematic exposition - lecture. Examples	2 hours
No-cloning theorem. Superdense coding. Shannon entropy and von Neumann entropy.	Systematic exposition - lecture. Examples	2 hours
Trace distance. Polar decomposition. Definition of the fidelity. Uhlmann's theorem. Properties of the fidelity. Approximate cloning machine	Systematic exposition - lecture. Examples	4 hours
Quantum cryptography	Systematic exposition - lecture. Examples	2 hours
Quantum gates. Deutsch's algorithm. Deutsch- Jozsa algorithm	Systematic exposition - lecture. Examples	2 hours
Bernstein-Vazirani algorithm. Simon algorithm	Systematic exposition - lecture. Examples	2 hours
Grover's quantum search algorithm. Shor's factoring algorithm	Systematic exposition - lecture. Examples	4 hours
Quantum channels	Systematic exposition - lecture. Examples	2 hours
Description of the IBM-Q quantum computer in the cloud and its application for the implementation of quantum algorithms	Systematic exposition - lecture. Examples	2 hours
Bibliography:		

- **1.** M. A. Nielsen and I. L. Chuang, *Quantum computation and quantum information*, Cambridge University Press, Cambridge, 2000.
- 2. Asher Peres, Quantum Theory: Concepts and Methods, Kluwer Academic Publishers, 1993.
- **3.** D. Bouwmeester, A. Ekert, and A. Zeilinger, *The Physics of Quantum Information*, Springer Verlag, 2000.
- 4. S. M. Barnett, Quantum Information, Oxford Master series in physics, Oxford University Press, 2009.
- 5. Iulia Ghiu, Lecture notes

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
The Baker-Campbell-Hausdorf identity. Problems with one and two qubits. Condition for a state to be entangled.	Problem solving	4 hours
Applications of the CHSH-Bell inequality. The analysis of the density operator for a qubit.	Problem solving	4 hours
Operator functions. The reduced density operators. Finding the Schmidt decomposition of a bipartite state. The analysis of the density operator of two spin-1/2 particles. The purity of a mixed state.	Problem solving	4 hours
Hadamard gate. Quantum teleportation using the GHZ state as the quantum channel. Entanglement swapping	Problem solving	4 hours
Computing the trace distance and the fidelity for some particular mixed states	Problem solving	4 hours
The generalized quantum teleportation and the evaluation of the average fidelity. The quantum circuit for the gates: SWAP, Toffoli, Fredkin	Problem solving	4 hours
The quantum circuit for teleportation. The CNOT gate with multiple targets	Problem solving	2 hours
Applications using the IBM-Q quantum computer in the cloud	Problem solving	2 hours

- **1.** M. A. Nielsen and I. L. Chuang, *Quantum computation and quantum information*, Cambridge University Press, Cambridge, 2000.
- **2.** D. Bouwmeester, A. Ekert, and A. Zeilinger, *The Physics of Quantum Information*, Springer Verlag, 2000.
- 3. S. M. Barnett, *Quantum Information*, Oxford Master series in physics, Oxford University Press, 2009.
- **4.** M. M. Wilde, *Quantum Information Theory*, Cambridge University Press, 2017.
- **5.** W. H. Steeb, Y. Hardy, *Problems and solutions in quantum computing and quantum information*, World Scientific, 2004.

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Europe (Oxford University, Royal Institute of Technology - Stockholm). The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	- Clarity and coherence of exposition - Correct use of equations/mathematical methods/physical models and theories - The ability to give specific examples	Written test/oral examination	60%
10.5.1. Tutorials	- Ability to use specific problem solving methods	Homeworks	40%
10.6. Minimal requirements for passing the exam			

Requirements for mark 5 (10 points scale)

At least 50% of exam score.

Date

Practicals/Tutorials instructor(s) name(s) and signature(s)

Teacher's name and signature name(s) and signature(s)

11.06.2019

Associate prof. dr. Iulia Ghiu Associate prof. dr. Iulia Ghiu

Date of approval

Head of Department
Prof.dr. Virgil Baran

72

DO.111.2.FTC Collisions theory

1. Study program

Bucharest
nysics
of Theoretical Physics, Mathematics, Optics, Plasma
ers
ience
nd Computational Physics (in English)
dy
i

2. Course unit

2.1. Course unit	title	Collisions the	ory						
2.2. Teacher			Assoc. prof. Dr. N	Mihai	Dondera				
2.3. Tutorials/Pr	2.3. Tutorials/Practicals instructor(s) Lect. Dr. Victor Dinu								
2.4. Year of		2.5.		2.6	6. Type of		2.7. Type	Content ¹⁾	DS
study	I	Semester	2	eva	aluation	Е	of course		
							unit		
								Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					20
3.2.2. Research in library, study of electronic resources, field research					20
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					25
3.2.4. Preparation for exam					4
3.2.5. Other activities			0		

3.3. Total hours of individual study	65
3.4. Total hours per semester	125
3.5. ECTS	5

4. Prerequisites (if necessary)

I rerequisites (ir nee	200041 3 7
4.1. curriculum	Quantum mechanics, Classical Statistical Mechanics, Equations of Mathematical
	Physics
4.2. competences	Knowledge about: mechanics, algebra, solving differential equations

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

Professional competences	 Identify and proper use of the main physical laws and principles in a given context: the use of the concepts of quantum collisions Solving problems of physics under given conditions Use of the physical principles and laws for solving theoretical or practical problems with qualified tutoring Rigorous knowledge of quantum theory, concepts, notions and problems in the area of
	quantum collisionsAbility to use this knowledge in various branches of physics
Transversal competences	 Efficient use of sources of information and communication resources and training assistance in a foreign language Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

1. Course objectives	
7.1. General objective	Understanding peculiarities of physical properties of quantum collisions.
	- Knowledge and understanding of effects related to fermionic or bosonic nature of quantum particles
	- Realize the importance of the field in modern physics
7.2. Specific objectives	Gain the ability to work with theoretical methods of quantum collisions theory
	Acquire the skills to describe the collisions processes and to calculate their cross sections

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Classification of collisions. Cross sections. Potential scattering, The scattering solution and the scattering amplitude.	Systematic exposition - lecture. Examples	2 hours
Scattering on central potentials, partial waves, phase shifts, phase shifts method. Resonances, Breit-Wigner formula, Scattering on Coulomb potential and potentials with Coulomb tail.	Systematic exposition - lecture. Examples	2 hours
The Lippmann-Schwinger equation. Green functions and operators. Born series method.	Systematic exposition - lecture. Examples	4 hours
Scattering on non-central potential	Systematic exposition - lecture. Examples	4 hours

Scattering of particles with spin. Scattering of identical particles	Systematic exposition - lecture. Examples	6 hours
The time dependent integral equation of potential scattering. Propagators.	Systematic exposition - lecture. Examples	4 hours
The relativistic scattering theory. Collision theory for Dirac equation. General scattering theory. In and Out states. Moller operators. The scattering operator. The generalized Fermi Formula.	Systematic exposition - lecture. Examples	6 hours

- C.J. Joachain, Quantum collision theory, North-Holland, 1975
- P. Roman, Advanced quantum theory, Addison-Wesley Pub. Co., 1965
- A. Messiah, Quantum mechanics, Dover, 1999
- E. Merzbacher, *Quantum mechanics*, John Willey & Sons, 1970
- M. Dondera, V. Florescu, Fizica atomica teoretica, Ed. UB, 2005
- J. Taylor, Scattering theory: the quantum theory of non-relativistic collisions, John Willey & Sons, 1972

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Collision kinematics; relativistic kinematics. Mandelstam variables	Problem solving	2 hours
The optical theorem. The Wronskian theorem and applications.	Problem solving	2 hours
Finite range potentials. The effective range formalism	Problem solving	4 hours
Analytical properties of the scattering amplitude. The Born approximation	Problem solving	4 hours
The R matrix method. Scattering of 1/2 spin particles in the Born approximation. Invariant amplitudes.	Problem solving	4 hours
Coulomb effects in scattering of identical particles	Problem solving	4 hours
Applications of the time dependent perturbation theory in the scattering theory.	Problem solving	4 hours
Inelastic scattering. The generalized optical theorem.	Problem solving	4 hours
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	- Clarity and coherence of	Written test and oral	
	exposition	examination	

	- Correct use of the methods/		60%		
	physical models				
	- The ability to give specific				
	examples				
10.5.1. Tutorials	- Ability to use specific problem	Homeworks	40%		
solving methods					
10.6. Minimal requirements for passing the exam					
Requirements for mark 5 (10 points scale)					
At least 50% of exam score and of homeworks.					

Teacher's name and signature Date

Practicals/Tutorials instructor(s) name(s) and signature(s)

Assoc. Prof.dr. Mihai Dondera

Lect. dr. Victor Dinu

Date of approval

10.06.2019

Head of Department

Prof.dr. Virgil Baran

DO.202.1.FTC Advanced methods in statistical physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2. Course unit									
2.1. Course unit ti	tle	Advanced methods in statistical physics				Advanced methods in statistical physics			
2.2. Teacher	.2. Teacher Prof.dr. Virgil Baran/ Prof.dr. Lucian Ion								
2.3. Tutorials/Prac	2.3. Tutorials/Practicals instructor(s) Lect.dr. Victor Dinu								
2.4. Year of		2.5.		2.6	6. Type of		2.7. Type	Content ¹⁾	DA
study	II	Semester	1	eva	aluation	Е	of course		
							unit		
								Type ²⁾	DO

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					25
3.2.2. Research in library, study of electronic resources, field research					30
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					35
3.2.4. Preparation for exam				4	
3.2.5. Other activities				0	

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

	<i>-</i>
4.1. curriculum	Quantum mechanics, Quantum Statistical Physics, Electrodynamics
4.2. competences	Knowledge about: mechanics, algebra, solving differential equations

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

Professional	• Identify and proper use of the main physical laws and principles in a given context: the use
competences	of the concepts of statistical quantum mechanics for strongly interacting systems
	Solving problems of physics under given conditions
	• Use of the physical principles and laws for solving theoretical or practical problems with
	qualified tutoring
	• Rigorous knowledge of quantum theory, concepts, notions and problems in the area of
	modern nuclear physics
	Ability to use this knowledge in interpretation of experimental result
	• Understanding the role of the interaction, of the particle nature and of the dimensionality
	over the dynamical properties
	• Developing the computational abilities and a sound theoretical knowledge of the studied
	problems
Transversal	Efficient use of sources of information and communication resources and training
competences	assistance in a foreign language
•	• Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

7. Course objectives

. Course objectives		
7.1. General objective	- Understanding the specific feature of the quantum systems composed from strongly correlated identical particles	
	Developing the capability to assimilate, analyse and compare	
	diverse phenomena, starting from basic principles	
	- Developing the ability to analyse and interpret the experimental	
	data and to formulate rigorous theoretical conclusions	
	- Developing the ability to apply mathematical models and	
	adequate numerical procedures	
7.2. Specific objectives	Gain the ability to work with theoretical methods of quantum many-body	
	systems adapted to strongly interacting systems	
	Acquire the skills to describe and calculate the physical properties of	
	quantum many-body systems involved in different physical conditions.	

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
The formalism of the Green functions:		
General properties of Green functions (symmetry,	Systematic exposition -	8 hours
Lehman representations), physical interpretation for	lecture. Examples	o nours
the retarded Green function.		
The formalism of the density functional:		_
The theory of the density functional. Hohenberg-	Systematic exposition - lecture. Examples	6 hours
Kohn theorems. The Kohn-Sham equations.		
Approximate functionals. Introduction in the theory		
of the time dependent density functional.		
The dynamics of the Bose-Einstein condensate		
The Gross-Pitaevskii equation. Elementary	Systematic exposition -	6 hours
excitations and collective modes. Solitons. Traps	lecture. Examples	o nours
for condensates for finite temperature.		
From the integral Hall effect to the fractional Hall	Systematic exposition -	6 hours
effect: Strong correlated systems and the	lecture. Examples	o nours

quasiparticle concept. Laughlin theory. The theory of compound fermions.		
Ginzburg—Landau theory of superconductivity. Basic equations. From type-I superconductor to type-II superconductors.	Systematic exposition - lecture. Examples	4 hours

- 1. E. Lipparini, Modern many-particle physics. Atomic gases, quantum dots and quantum fluids, World Scientific, 2003
- 2. R.G. Paar, W. Yang, Density functional theory for atoms and molecules, Oxford UP, 1989
- 3. C.A. Ullrich, Time-Dependent Density Functional Theory, Oxford UP, 2012
- 4. J.K. Jain, Composite fermions, Cambridge UP, 2007
- 5. T. Chakraborty, P. Pietilainen, The quantum Hall effects, Fractional and Integral, Springer 1995
- 6. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge UP, 2008
- 7. Z.F. Ezawa, Quantum Hall effects, World Scientific, 2007
- 8. Fetter A.L., J.D. Walecka, *Quantum theory of Many Particle systems* (McGraw Hill, New-York)
- 9. W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications, WILEY-VCH Verlag GmbH 2004

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Galitskii-Migdal theorems. The relation with the observables. Differential equations. Correlation functions:definition, general properties, the similarity with the Green functions.	Problem solving	6 hours
Applications of the Green formalism for various systems. The Thomas-Fermi approximation and its extensions	Problem solving	4 hours
Applications of Density Functional Theory	Problem solving	4 hours
Collective dynamics of Bose-Einstein condensates	Problem solving	4 hours
The theory of compound fermions.	Problem solving	4 hours
Superconductivity: surface energy and thermodynamic critical field in Ghinzburg-Landau theory. Vortex lattice. Josephson tunnelling.	Problem solving	6 hours
Rihliography:		

Bibliography:

A.S. Alexandrov Theory of Superconductivity .From Weak to Strong Coupling, IOP Publishing Ltd 2003

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	- Clarity and coherence of	Written test and oral	
	exposition	examination	
	- Correct use of the methods/		60%

	physical models				
	- The ability to give specific				
	examples				
10.5.1. Tutorials	Homeworks	40%			
solving methods					
10.6. Minimal requirements for passing the exam					
Requirements for mark 5 (10 points scale)					
At least 50% of exam score and of homeworks					

Teacher's name and signature Date

10.06.2019

Prof.dr. Virgil Băran Prof.dr. Lucian Ion

Date of approval

Practicals/Tutorials instructor(s) name(s) and signature(s)

Lect.dr. Victor Dinu

Head of Department

Prof.dr. Virgil Baran

DO.202.2.FTC Computational methods for electronic structures of condensed systems

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

2. Course unit

2. Course unit									
2.1. Course title Computation				nal methods for electronic structures of condensed systems					
2.2. Teacher			Conf. dr. George Alexandru NEMNES						
2.3. Tutorials ins	structor(s	s)	Conf. dr. George Alexandru NEMNES						
2.4. Practicals in	2.4. Practicals instructor(s)								
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DA
study	2	Semester	1	evalı	ation	Е	of course unit	Type ²⁾	DO

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				bibliography	20
3.2.2. Research in library, study of electronic resources, field research				20	
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					25
3.2.4. Examination					4
3.2.5. Other activities	I				

3.3. Total hours of individual study	78
3.4. Total hours per semester	138
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Solid State Physics I and II, Thermodynamics and
	statistical physics, Electrodynamics, Physical Electronics, Equations of
	mathematical physics
4.2. competences	Using of software tools for data analysis/processing

e contained in the contained in	110088417)
5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	-

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

6. Acquired specific competencies

o <u>rrequired specific</u>	
Professional competencies	• Identification and adequate use of computational <i>ab initio</i> tools for condensed matter systems.
	 Solving physics problems in given conditions.
	Creative use of acquired physical knowledge to understand first principles computational methods.
	Analysis and communication of scientific data, communication for physics popularization.
	• Use and development of specific software tools.
Transversal competencies	 Efficient use of scientific information resources and of communication and of resources for professional formation in English. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

7.1. General objective	Understanding of first principles methods and computational tools.
7.2. Specific objectives	- Understanding the approximate methods for many-body systems –
	perturbative and variational based methods.
	- Understanding the density functional theory method.
	- Ability to assimilate, analyse and compare diverse physical phenomena,
	employing fundamental principles.
	- Ability of analyse and interpret numerical data, especially concerning
	band structure calculations and optical properties on the bases of DFT
	codes and to formulate rigorous theoretical conclusions.
	- Ability to employ mathematical and numerical models for modelling the
	physical phenomena.
	- Ability to use theoretical methods in modelling various physical systems
	of interest.
	- Ability to develop computer programs for modelling electronic structure
	of materials

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations
Introduction. Classification of many-body approximate methods.	Systematic exposition - lecture. Examples.	2 hours
The problem of electron correlations.	Systematic exposition - lecture. Examples.	4 hours
The density functional theory (DFT). Hohenberg-Kohn theorems.	Systematic exposition - lecture. Examples.	2 hours
Kohn-Sham method. Kohn-Sham equations.	Systematic exposition - lecture. Examples.	2 hours
Functionals for the exchange and correlation terms. The local density approximation (LDA) and local spin density approximation (LSDA). The GGA approximation.	Systematic exposition - lecture. Examples.	4 hours

82

Orbital dependent functionals: self-interaction	Systematic exposition -	4 hours
correction (SIC) and LDA+U approximation. Hybrid	lecture. Examples.	
functionals.		
Ab initio numerical techniques. Pseudopotentials.	Systematic exposition -	4 hours
	lecture. Examples	
Semilocal pseudopotentials. Ultrasoft	Systematic exposition -	2 hours
pseudopotentials.	lecture. Examples	
Extensions: time dependent density functional theory.	Systematic exposition -	2 hours
	lecture. Examples	
GW approximation. Applications.	Systematic exposition -	2 hours
	lecture. Examples	

References:

- 7. H. Bruus, K. Flensberg, *Many-Body Quantum Theory in Condensed Matter Physics: An Introduction* (Oxford University Press, Oxford 2004).
- 8. R.M. Martin, Electronic structure: basic theory and practical methods (Cambridge University Press, Cambridge, 2004).

9. W. Nolting, Fundamentals of Many-body Physics (Springer Verlag, Berlin, 2009).

Teaching and learning techniques	Observations
Exposition. Guided work	4 ore
	Exposition. Guided work Exposition. Guided work

Bibliography:

2. SIESTA Manual, https://departments.icmab.es/leem/siesta/

8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
	Guided practical work	4 ore
8.4. Research project [if applicable]	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	 Explicitness, coherence and concision of scientific statements; Correct use of physical models and of specific mathematical methods; Ability to analyse specific examples; 	Written and oral exam	50%
10.5.1. Tutorials	- Use of specific physical and mathematical methods and techniques;	Homework, research projects	50%
10.5.2. Practicals	- Knowledge and correct use of specific experimental techniques - Data processing and analysis;	Colloquium	xx%
10.5.3. Project [if applicable]			

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

Correct solutions to indicated subjects (for mark 5) in final exam

Date Teacher's name and signature Practicals/Tutorials instructor(s)

name(s) and signature(s)

10.10.2019 Conf. dr. George Alexandru

Nemnes Conf. dr. George Alexandru Nemnes

Head of department, Date of approval Conf. dr. Petrică Cristea

D0.204.1.FTC Computational methods in modern physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

e. Course unit									
2.1. Course title Computation			ional methods in mo	odern	physics				
2.2. Teacher	2.2. Teacher			Assoc. Prof. Alexa	andru	Nicolin / Lec	t. Dr. Roxana Zus		
2.3. Tutorials ins	structor(s	s)							
2.4. Practicals in	2.4. Practicals instructor(s)		Dr. Mihai Marciu						
2.5. Year of		2.6.			7. Type of		2.8. Type	Content ¹⁾	DA
study	2	Semester	1	ev	aluation	Е	of course unit	Type ²⁾	DO

3. Total estimated time (hours/semester)

4	distribution: Lecture	2	Practicals/Tutorials	2
56	Lecture	28	Practicals/Tutorials	28
dy	I		L	hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				
3.2.2. Research in library, study of electronic resources, field research				
3.2.3. Preparation for practicals/tutorials/projects/reports/homework				
3.2.4. Preparation for exam				
3.2.5. Other activities				Λ.
	56 dy course ectron	Lecture 56 Lecture dy course notes, manuals, lecture ectronic resources, field res	4 Lecture 28 56 Lecture 28 course notes, manuals, lecture notes ectronic resources, field research	4 Lecture 2 Practicals/Tutorials 56 Lecture 28 Practicals/Tutorials dy course notes, manuals, lecture notes, bibliography ectronic resources, field research

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Programming languages, Linear algebra, Analytical mechanics, Electrodynamics,
	Quantum Mechanics, Thermodynamics and Statistical Physics
4.2. competences	Working with software packages which do not require a license for data analysis and
	data processing

(12.1	<i></i>
5.1. for lecture	
5.2. for practicals/tutorials	Scientific computing laboratory

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

	•
Professional	• Understanding how to solve differential equations with Hamiltonian structure using the
competences	leapfrog method and related methods. Understanding time-reversibility and energy
	conservation.
	• Understanding finite difference methods and their use in numerical study of the
	Schrödinger equation. Understanding the conservation of the norm of the wave function
	and the emergence of numerical instabilities.
	• Understanding the use of finite difference methods for numerically solving Maxwell equations.
	• Understanding the dynamics of electrically charged particles moving in an
	electromagnetic through the numerical solution of the Vlasov equation using the test particle method.
	• Understanding <i>particle-in-cell</i> equations and self-consistent solution of field equations
	and those describing particle dynamics. Understanding the Boris algorithm for particle
	propagation over time and the Courant stability condition.
Transversal	• Efficient use of scientific information resources and of communication and of resources
competences	for professional formation in English.
	• Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

7. Course objectives

· Course objectives				
7.1. General objective	Presentation of computational methods in modern physics			
7.2. Specific objectives	Study of leapfrog method and related methods for solving differential			
	equations of Hamiltonian structure			
	Study of finite-difference methods for solving the Schrödinger equation			
	and Maxwell equations			
	Study of the test particle method used to numerically solve the Vlasov			
	equation			
	Study of particle-in-cell equations that describe the dynamics of			
electrically charged particles in an electromagnetic field				
	The study of the interaction of laser pulses with metal clusters			

8. Contents

8.1. Lecture	Teaching techniques	Observations/ hours
Simplectic and near-simplectic methods for numerical solving of differential equations with Hamiltonian structure. Energy and volume conservation in the phase space.	Systematic exposition - lecture. Examples	2 hours
Finite-difference methods for the three-dimensional Schrödinger equation (especially for periodic and harmonic potential). Conservation of the norm. Stability conditions. Numerical instabilities. Border conditions. Analytical calculations for calibrating the accuracy of numerical schemes.	Systematic exposition - lecture. Examples	4 hours
Finite difference methods for Maxwell equations. Border conditions. Numerical instabilities.	Systematic exposition - lecture. Examples	6 hours
The Vlasov equation and the test particle method. Derivation of particle-in-cell equations. Study of shape functions.	Systematic exposition - lecture. Examples	4 hours
Self-consistent solving of field equations and those describing particle dynamics. Boris algorithm for particle propagation over time. Courant stability condition.	Systematic exposition - lecture. Examples	4 hours

Interaction of laser pulses with metal clusters	Systematic exposition - lecture. Examples	4 hours
Comparative presentation of particle-in-cell codes available for solving equations.	Systematic exposition - lecture. Examples	4 hours

- 1. B. Leimkuhler şi S. Reich, Simulating Hamiltonian dynamics, Cambridge University Press, 2004.
- 2. D.F. Griffiths, J.W. Dold și D.J. Silvester, *Essential partial differential equations*. *Analytical and computational aspects*, Springer, 2015.
- 3. S. Mazumder, *Numerical methods for partial differential equations. Finite difference and finite volume methods*, Academic Press, 2016.
- 4. S.E. Koonin şi D.C. Meredith, Computational physics. Fortran versions, Perseus Books, 1998.
- 5. P. Mulser și D. Bauer, High power laser-matter interaction, Springer, 2010.
- 6. P.G. Reinhard şi E. Suraud, Introduction to cluster dynamics, Wiley-VCH, 2004.
- 7. K. Langanke, J.A. Maruhn şi S.E. Koonin, Eds., *Computational Nuclear Physics 2. Nuclear Reactions*, Springer, 1993.
- 8. T.D. Arber *et al.*, *Contemporary particle-in-cell approach to laser-plasma modelling*, Plasma Phys. Control. Fusion **57**, 113001 (2015)

8.2. Tutorials	Teaching and learning techniques	Observations
Solving the three-dimensional Schrödinger equation for a harmonic (radial) and periodic (transverse) potential. Variational determination of the solution of the Schrödinger equation with cubic nonlinearities.	Lecture. Problem solving	4 hours
The analytical solution of Maxwell equations in a two- and three-dimensional numerical setup, in homogeneous environments.	Lecture. Problem solving	4 hours

Bibliography:

- 1. G.L. Squires, *Problems in quantum mechanics with solutions*, Cambridge University Press, 1995.
- 2. Y.-K. Lim, Problems and solutions on electromagnetism, World Scientific, 1993

8.3 Laboratory	Teaching and learning techniques	Observations
Numerical solution of differential equations with Hamiltonian structure by simplectic and quasi-simplectic methods. Code in Octave/python/C/C ++	Supervised practical activity	4 hours
The numerical solution of the Schrödinger equation. Code in Octave/python/C/C ++	Supervised practical activity	4 hours
Numerical solution of Maxwell equations. Code in Octave/python/C/C++	Supervised practical activity	4 hours
Numerical solution of particle-in-cell equations. Observation of ultra-intense laser pulse interaction with gaseous and solid targets, wakefield acceleration. Use of EPOCH PIC code	Supervised practical activity	6 hours
Numerical solution of the Vlasov equation. Use of existing FORTRAN programs	Supervised practical activity	2 hours

Bibliography:

- 1. B. Leimkuhler și S. Reich, Simulating Hamiltonian dynamics, Cambridge University Press, 2004.
- 2. K.W. Morton şi D.F. Mayers, *Numerical solution of partial differential equations*, Cambridge University Press, 2005.
- 3. Yu.N. Grigoryev et al., Numerical particle-in-cell methods: Theory and applications, de Gruyter, 2002.

8.4 Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

In order to sketch the contents, to choose the teaching/learning methods, the coordinator of the course consulted the content of similar disciplines taught at Romanian universities and abroad. The content of the discipline is according to the requirements of employment in research institutes in physics and materials science, as well as in education (according to the law).

10. Assessment

U. TASSESSIIICITE			
Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test/oral examination	60%
10.5.1. Tutorials	- Ability to use specific problem- solving methods	Homework	10%
10.5.2 Laboratory	- Ability to use specific problem- solving methods	Homework	30%
10.5.3 Project			
10.6 Minimal requirem	ants for passing the even		

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

At least 50% of exam score and of homeworks.

Date 10.06.2019

Teacher's name and signature

Assoc. Prof. Alexandru Nicolin,

Lect. Dr. Roxana Zus

Practicals/Tutorials instructor(s)

name(s) and signature(s)

Dr. Mihai Marciu,

Head of Department

Prof. Virgil Băran

Date of approval

D0.204.2.FTC Theory of intense laser radiation interaction with atomic and nuclear systems

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2. Course unit								
2.1. Course title		7	Theory	of intense laser radia	tion in	teraction with	atomic and nuclea	r
		S	ystems	S				
2.2. Teacher				Assoc. Prof. Măd	ălina I	Boca, Assoc. I	Prof. Alexandru Nic	colin
2.3. Tutorials ins	structor(s	s)						
2.4. Practicals in	structor	(s)		Assoc. Prof. Alex	andru	Nicolin		
2.5. Year of		2.6.		2.7. Type of		2.8. Type	Content ¹⁾	DA
study	2	Semester	1	evaluation	Е	of course	Type ²⁾	DO
						unit		

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

4	distribution: Lecture	2	Practicals/Tutorials	2
56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for study				hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				30
3.2.2. Research in library, study of electronic resources, field research			30	
3.2.3. Preparation for practicals/tutorials/projects/reports/homework			30	
3.2.4. Preparation for exam			4	
				0
	dy ourse i	4 Lecture 56 Lecture dy ourse notes, manuals, lecture ectronic resources, field reserved.	4 Lecture 2 56 Lecture 28 dy ourse notes, manuals, lecture notes ectronic resources, field research	4 Lecture 2 Practicals/Tutorials 56 Lecture 28 Practicals/Tutorials dy ourse notes, manuals, lecture notes, bibliography ectronic resources, field research

3.3. Total hours of individual study	90
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Programing languages, Quantum mechanics, Nuclear physics
4.2. competences	Working with software packages which do not require a license for data analysis and
	data processing

7101	Taria de la companya
5.1. for lecture	Videoprojector
5.2. for practicals/tutorials	Scientific computing laboratory

Professional	• Understanding the Boltzmann-Vlasov transport formalism. Understanding the test
competences	particle method which is used for the numerical solution of the Boltzmann-Vlasov equations.
	 Understanding the dynamics of electrically charged particles moving in an electromagnetic field from the numerical solution of transport equations Understanding particle-in-cell methods and the self-consistent numerical treatment of field equations and those describing particle dynamics.
	 Understanding the numerical treatment of ordinary differential equations with Hamiltonian structure using leapfrog and related methods. Understanding time- reversibility and energy conservation.
Transversal competences	 Efficient use of scientific information resources and of communication and of resources for professional formation in English. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

1. Course objectives	
7.1. General objective	Presentation of a large class of computational methods used to study the
	interaction of laser pulses with atomic and nuclear systems
7.2. Specific objectives	Study the general properties of atomic and nuclear systems
	Numerical study of the Boltzmann-Vlasov transport equations using the
	test particle method
	Numerical study of transport equations that describe the dynamics of
	electrically charged particles moving in an electromagnetic field
	Study of particle-in-cell methods that describe the dynamics of electrically
	charged particles in electromagnetic fields
	Study collective modes in atomic nuclei
	Study the interaction of laser pulses with metal clusters

8. Contents

. Contents		
8.1. Lecture	Teaching techniques	Observations/ hours
Fundamentals of atomic and nuclear systems	Systematic exposition - lecture. Examples	2 hours
Boltzmann-Vlasov and Boltzmann-Maxwell transport equations	Systematic exposition - lecture. Examples	4 hours
Test particle method for the numerical treatment of Vlasov-type equations. Derivation of particle-in-cell equations.	Systematic exposition - lecture. Examples	4 hours
Self-consistent numerical treatment of field equations and equations describing particle dynamics. Stability conditions.	Systematic exposition - lecture. Examples	4 hours
Numerical methods for equations which describe particle dynamics. Energy and phase-space volume conservation. Symplecticness.	Systematic exposition - lecture. Examples	4 hours
The interaction of intense laser radiation with atomic nuclei and metal clusters. Experimental and theoretical results.	Systematic exposition - lecture. Examples	8 hours
Presentation of future experiments at the European research infrastructure Extreme Light Infrastructure.	Systematic exposition - lecture. Examples	4 hours

Bibliography:

- 1. P.M. Bellan, Fundamentals of plasma physics, Cambridge University Press, 2008.
- 2. P. Mulser și D. Bauer, *High power laser-matter interaction*, Springer, 2010.

- 3. B. Leimkuhler și S. Reich, Simulating Hamiltonian dynamics, Cambridge University Press, 2004.
- 4. P.G. Reinhard și E. Suraud, Introduction to cluster dynamics, Wiley-VCH, 2004.
- 5. K. Langanke, J.A. Maruhn și S.E. Koonin, Eds., *Computational Nuclear Physics 2. Nuclear Reactions*, Springer, 1993.
- 6. G.A. Mourou, G. Korn, W. Sandner și J.L. Collier, Eds., *ELI Extreme Light Infrastructure.* Whitebook. Science and technology with ultra-intense lasers, 2011
- 7. F. Negoita et al., Laser driven nuclear physics at ELI-NP, Rom. Rep. Phys. 68, S37 (2016).
- 8. K. Homma et al., Combined laser gamma experiments at ELI-NP, Rom. Rep. Phys. 68, S233 (2016).

8.2. Tutorials	Teaching and learning techniques	Observations
Particular properties and solutions of the Boltzmann equation. Analytical calculations.	Lecture. Problem solving	6 hours
Particular properties and solutions of the Vlasov equation. Analytical calculations.	Lecture. Problem solving	8 hours

- 1. G.M. Kremer, An introduction to the Boltzmann equation and transport processes in gases, Springer, 2010.
- 2. C. Cercignani, *The Boltzmann equation and its applications*, Springer, 1988.
- 3. P.M. Bellan, Fundamentals of plasma physics, Cambridge University Press, 2008.

8.3 Laboratory	Teaching and learning techniques	Observations
Numerical solution of differential equations with Hamiltonian structure by explicit, semi-implicit and implicit methods. Runge-Kutta methods. The leapfrog method. Time reversibility. Code in Octave/python/C/C++.	Supervised practical activity	6 hours
Numerical solution of Vlasov-type equations. Numerical determination of collective modes (especially pygmy dipole resonance and giant dipole resonance) in different atomic species and the numerical study of the interaction of laser pulses with metallic clusters. Use of existing numerical codes developed within the Department of Theoretical Physics and Mathematics, Optics, Plasma, Lasers.	Supervised practical activity	8 hours

Bibliography:

- 1. E. Hairer et al., Solving ordinary differential equations II. Stiff and differential-algebraic problems, Springer, 1996.
- 2. P.G. Reinhard şi E. Suraud, Introduction to cluster dynamics, Wiley-VCH, 2004.
- 3. K. Langanke, J.A. Maruhn și S.E. Koonin, Eds., *Computational Nuclear Physics 2. Nuclear Reactions*, Springer, 1993.

8.4 Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

In order to sketch the contents, to choose the teaching/learning methods, the coordinator of the course consulted the content of similar disciplines taught at Romanian universities and abroad. The content of the discipline is according to the requirements of employment in research institutes in physics and materials science, as well as in education (according to the law).

10. Assessment

U. Tassessificit			
Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test/oral examination	60%
10.5.1. Tutorials	- Ability to use specific problem- solving methods	Homework	10%
10.5.2 Laboratory	- Ability to use specific problem- solving methods	Homework	30%
10.5.3 Project			
10.6. Minimal requiren	nents for passing the exam		

Requirements for mark 5 (10 points scale)

At least 50% of exam score and of homeworks.

Date 15.06.2019

Date of approval

Teacher's name and signature

Assoc. Prof. Alexandru Nicolin, Assoc. Prof. Mădălina Boca Practicals/Tutorials instructor(s)

name(s) and signature(s)

Assoc. Prof. Alexandru Nicolin,

Head of Department

Prof. Virgil Băran

Optional Courses

DFC.113.FTC Physics of mesoscopic systems

1. Study program

<u> J I - B </u>	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Theoretical Physics, Mathematics, Optics, Plasma and
	Lasers
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Theoretical and Computational Physics (in English)
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title]	Physic	s of m	iesoscopic syst	tems			
2.2. Teacher					Prof. dr. Luci	an Ion			
2.3. Tutorials in	structor(s	s)			Prof. dr. Luci	an Ion			
2.4. Practicals in	nstructor((s)							
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DA
study	1	Semester	1	evalı	uation	Е	of course	Type ²⁾	DF
							unit		ac

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				10	
3.2.2. Research in library, study of electronic resources, field research			10		
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks			20		
3.2.4. Examination				4	
3.2.5. Other activities					

3.3. Total hours of individual study	40
3.4. Total hours per semester	100
3.5. ECTS	4

4. Prerequisites (if necessary)

	<i>-</i>
4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State Physics
4.2. competences	Using of software tools for data analysis/processing

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	-

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

6. Acquired specific competencies

o. 11cquii cu speciii	e competencies
Professional competencies	 Identification and adequate use of physics laws in a given context; identification and adequate use of notions and specific physics laws for mesoscopic systems. Solving physics problems in given conditions. Creative use of acquired physical knowledge to understand and to construct models for physical processes and properties of mesoscopic systems/nanostructures. Analysis and communication of scientific data, communication for physics popularisation. Use and development of specific software tools.
Transversal competencies	 Efficient use of scientific information resources and of communication and of resources for professional formation in English. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

. Course objectives				
7.1. General objective	Introduction and analysis of the physical properties of mesoscopic			
	systems			
7.2. Specific objectives	Study of electronic structure, transport and optical properties of			
	mesoscopic systems.			
	Analysis of specific charge transport models.			
	Highlighting of essential problems in understanding of specific			
	phenomena, in order to stimulate creative and critical thinking în solving			
	problems.			

8. Contents

. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations
Introduction: description of mesoscopic systems. Growth and processing methods. Length scales.	Systematic exposition - lecture. Examples.	4 hours
Electronic structure of mesoscopic systems. Envelope wavefunction method.	Systematic exposition - lecture. Examples.	4 hours
Anderson localization. Scaling theory of localization. Reduced dimensionality. Case $d \le 2$. Case $d \ge 2$. Metal-insulator transition	Systematic exposition - lecture. Examples.	6 hours
Quantum interference effects în charge transport. Landauer-Büttiker formalism. Applications.	Systematic exposition - lecture. Examples.	4 hours
Chrage transport în magnetic fields. Shubnikov – de Haas oscillations. Integer quantum Hall effect.	Systematic exposition - lecture. Examples.	4 hours
Aharonov-Bohm effect. Berry phase.	Systematic exposition - lecture. Examples.	4 hours
Coulomb blockade în semiconductor nanostructures	Systematic exposition - lecture. Examples.	2 hours

References:

- 10. D.K. Ferry, S.M. Goodnick, *Transport in nanostructures* (Cambridge University Press, Cambridge, UK, 1997).
- 11. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

- 12. H. Bouchiat, Y. Gefen, S. Gueron, G. Montambaux, J. Dalibard (Eds.), *Nanophysics: Coherence and Transport* (Elsevier, Amsterdam, Netherland, 2005).
- 13. V.F. Gantmakher, Electrons and disorder în solids (Clarendon Press, Oxford, UK, 2005)
- 14. L. Ion, Course notes

8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
Electronic states în mesoscopic systems. Envelope wavefunction method. Aplications.	Exposition. Guided work	4 ore
Effect of disorder in 1D and 2D electronic systems.	Exposition. Guided work	4 ore
Electronic states in 2D electron systems in magnetic fields. Disorder effects.	Exposition. Guided work	4 ore
Charge transport în mesoscopic structures. R-matrix formalism.	Exposition. Guided work	4 ore
Charge transport in quantum wires. <i>Ab initio</i> models.	Exposition. Guided work	4 ore
Weak localization regime.	Exposition. Guided work	4 ore
Electron-phonon interaction în low-dimensional systems. Peierls transition.	Exposition. Guided work	4 ore

- 3. L. Mihaly, M.C. Martin, Solid State Physics Problems and solutions (Wiley, New York, USA, 1996)
- 4. S. Datta, *Electronic Transport în Mesoscopic Systems* (Cambridge University Press, Cambridge, UK, 1997).

5. Y. Imry, *Introduction to Mesoscopic Physics* (Oxford University Press, Oxford, UK, 1997)

j,	<i>y</i> , ,	, ,
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
	Guided practical work	4 ore
8.4. Research project [if applicable]	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	- Explicitness, coherence and concision of scientific statements; - Correct use of physical models and of specific mathematical methods;	Written and oral exam	50%

	- Ability to analyse specific examples;		
10.5.1. Tutorials	- Use of specific physical and mathematical methods and techniques;	Homework, research projects	50%
10.5.2. Practicals	- Knowledge and correct use of specific experimental techniques - Data processing and analysis;	Colloquium	
10.5.3. Project [if applicable]			

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

Correct solving of subjects indicated as required for obtaining mark 5.

Date Teacher's name and signature Practicals/Tutorials instructor(s)

name(s) and signature(s)

25.06.2019 Prof. dr. Lucian Ion

Prof. dr. Lucian Ion

Date of approval Head of department,

Prof.dr. Virgil Băran

DFC.114.FTC Advanced methods for parallel computing

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

- Course unit							
2.1. Course title Advanced 1			methods for paralle	el com	puting		
2.2. Teacher			Assoc. Prof. Alexa	andru	Nicolin		
2.3. Tutorials instructor(s)			Assoc. Prof. Alexa	andru	Nicolin		
2.4. Practicals instructor(s)			Assoc. Prof. Alexa	andru	Nicolin		
2.5. Year of 2.6.		2.7	7. Type of		2.8. Type	Content ¹⁾	DA
study 1 Sem	ester 2	ev	aluation	Е	of course unit	Type ²⁾	DF
					uiiit		ac

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	0/2
3.2. Total hours per semester		Lecture	28	Practicals/Tutorials	0/28
Distribution of estimated time for stu	dy		•		hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography		, bibliography	10		
3.2.2. Research in library, study of electronic resources, field research		-	10		
3.2.3. Preparation for practicals/tutorials/projects/reports/homework			20		
3.2.4. Preparation for exam			4		
3.2.5. Other activities			0		
2.2 Total hours of individual study	40				•

3.3. Total hours of individual study	40
3.4. Total hours per semester	100
3.5. ECTS	4

4. Prerequisites (if necessary)

4.1. curriculum	Programing languages
4.2. competences	Working with software packages which do not require a license for data analysis and
	data processing

5.1. for lecture	Videoprojector
5.2. for practicals/tutorials	Scientific computing laboratory

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

Professional	• Understanding the basic principles of advanced scientific computing, especially high-
competences	performance computing and high-throughput computing.
	Understanding the OpenMP and MPI paradigms
	• Understanding CPU and GPU based computing architectures. Understanding FPGA
	architectures
	Understanding new paradigms in scientific programming
Transversal	• Efficient use of scientific information resources and of communication and of resources
competences	for professional formation in English.
_	• Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

7. Course objectives

7.1. General objective	Presenting the basic elements of high-performance computing and high-		
	throughput computing, both from the perspective of computing		
	infrastructures and from the perspective of software implementations		
7.2. Specific objectives	Study the basic principles of high-performance computing and high-		
	throughput computing		
	Study programming techniques which rely on OpenMP and MPI		
	Study of computing architectures (CPU, GPU, FPGA)		
	Study of new scientific programming languages (Julia)		

8. Contents

8.1. Lecture	Teaching techniques	Observations/ hours
The basic elements of modern computing architectures. Flynn's taxonomy. Overview of programming languages.	Systematic exposition - lecture. Examples	2 hours
Legacy codes, serial code optimizations. Fortran code case study for collective modes in atomic nuclei.	Systematic exposition - lecture. Examples	4 hours
The two-language problem. An introduction to the Julia scientific programing language.	Systematic exposition - lecture. Examples	4 hours
Basic principles of high-throughput computing.	Systematic exposition - lecture. Examples	4 hours
Parallel optimizations using OpenMP and MPI. The basic principles of high-performance computing. Fortran code case study for collective modes in atomic nuclei.	Systematic exposition - lecture. Examples	4 hours
Natively parallel numerical methods. The Gauss-Seidel method. Numerical integration methods.	Systematic exposition - lecture. Examples	4 hours
Parallel computing libraries. Parallel implementations for BLAS, LAPACK	Systematic exposition - lecture. Examples	8 hours
Scientific computing using GPU and FPGA processing units.	Systematic exposition - lecture. Examples	4 hours
Introduction to the Julia libraries for solving ordinary differential equations and partial differential equations, and optimization problems.	Systematic exposition - lecture. Examples	4 hours

Bibliography:

- 1. W.P. Petersen şi P. Arbenz, *Introduction to parallel computing. A practical guide with examples in C*, Oxford University Press, 2004.
- 2. R.W. Shonkwiler și L. Lefton, *An introduction to parallel and vector scientific computation*, Cambridge University Press, 2006.
- 3. The Julia Language, https://docs.julialang.org/en/v1/.

8.2. Tutorials	Teaching and learning techniques	Observations
8.3 Laboratory	Teaching and learning techniques	Observations
Solving linear systems of equations. C implementations.	Supervised practical activity	6 hours
Computing eigenvectors and eigenvalues. C implementations.	Supervised practical activity	6 hours
Numerical integration of multidimensional integrals. C implementations.	Supervised practical activity	6 hours
Numerical solution for ordinary differential equations and partial differential equations. Julia implementations.	Supervised practical activity	10 hours
Bibliography:		

1. W.P. Petersen și P. Arbenz, Introduction to parallel computing. A practical guide with examples in C, Oxford University Press, 2004.

The Julia Language, https://docs.julialang.org/en/v1/

8.4 Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

In order to sketch the contents, to choose the teaching/learning methods, the coordinator of the course consulted the content of similar disciplines taught at Romanian universities and abroad. The content of the discipline is according to the requirements of employment in research institutes in physics and materials science, as well as in education (according to the law).

10. Assessment

U. Tissessificit				
Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark	
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test/oral examination	60%	
10.5.1. Tutorials				
10.5.2 Laboratory	- Ability to use specific problem- solving methods	Homework	40%	
10.5.3 Project				
10 (14' ' 1 '	, e • 41			

10.6. Minimal requirements for passing the exam

Requirements for mark 5 (10 points scale)

At least 50% of exam score and of homeworks.

Date 11-VI-2019 Teacher's name and signature

Assoc. Prof. Alexandru Nicolin,

Practicals/Tutorials instructor(s) name(s) and signature(s)

Assoc. Prof. Alexandru Nicolin,

Date of approval

Head of Department

Prof. Virgil Băran

DFC.210.FTC Computational approaches in high-energy physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2. Course unit								
2.1. Course unit title	Computationa	Computational approaches in high-energy physics						
2.2. Teacher Prof. dr.				Prof. dr. Virgil Ba	aran /	Lect. dr. Roxa	na Zus	
2.3. Tutorials/Practicals instructor(s) Lect. dr. Roxana Zus								
2.4. Year of	2.5.		2.6	6. Type of		2.7. Type	Content ¹⁾	DS
study II	Semester			aluation	E	of course		
						unit		
							Type ²⁾	DF
								ac

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	40	Lecture	20	Practicals/Tutorials	20
Distribution of estimated time for stu	dy	•			hours
3.2.1. Learning by using one's own c	ourse	notes, manuals, lecture	notes	, bibliography	10
3.2.2. Research in library, study of el	ectron	ic resources, field resea	arch		11
3.2.3. Preparation for practicals/tutor	ials/pro	ojects/reports/homewo	rks		10
3.2.4. Preparation for exam					4
3.2.5. Other activities					0

3.3. Total hours of individual study	31
3.4. Total hours per semester	75
3.5. ECTS	3

4. Prerequisites (if necessary)

	3 /
4.1. curriculum	Algebra, Analysis, Quantum mechanics
4.2. competences	Knowledge about: mechanics, solving differential equations

Conditions, that acture (if necessary)							
5.1. for lecture	Video projector						
5.2. for practicals/tutorials							

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

Professional competences	 understanding the dynamics of nuclear systems and elementary particles with realistic numerical methods; developing abilities to apply appropriate numerical methods for modelling physical systems ability to analyze and interpret relevant numerical results and to formulate rigorous conclusions
Transversal competences	 Efficient use of sources of information and communication resources and training assistance in a foreign language Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

. Course objectives	
7.1. General objective	Describing and understanding of the structure of the nuclear and subnuclear systems based on numerical investigations;
7.2. Specific objectives	Development of the skill to apply mathematical models for modelling various physical processes
	Acquire the appropriate understanding of the connections between
	computational methods and physics

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Computational methods in nuclear structure: algorithms for nuclear models, numerical solutions for the study of nuclear matter properties in Hartree-Fock theory with pairing interaction, numerical approaches in RPA theory for collective nuclear response,	Systematic exposition - lecture. Examples	8 hours
Computational methods for nuclear reactions description.	Systematic exposition - lecture. Examples	6 hours
Numerical methods for matter structure investigation. Deep inelastic scattering. Hadronhadron scattering.	Systematic exposition - lecture. Examples	6 hours

Bibliography:

- 1. K. Langanke, J.A. Maruhn, S.E. Koonin, Computational Nuclear Physics, vol 1 and 2, Springer Verlag, 1991
- 2. R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and collider physics, Cambridge University Press, 2003

8.2. Tutorials/ Practicals [main themes]	Teaching and learning techniques	Observations/hours	
Numerical applications to collective geometric model study and to interacting boson approximation study.	Problem solving	6 hours	
Numerical simulations for relativistic kinematics and cross-sections for elementary particles collisions.	Problem solving	6 hours	

Electron-proton collisions associated to HERA-DESY experiments.	Problem solving	4 hours
Proton-proton collisions associated to LHC-CERN experiments.	Problem solving	4 hours

- 1. T. Sjostrand, S. Mrenna, and P. Z. Skands, Comput. Phys. Commun. 178, 852 (2008), arXiv:0710.3820
- 2. PYTHIA http://home.thep.lu.se/~torbjorn/Pythia.html
- 3. ROOT http://root.cern.ch

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark		
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test and oral examination	60%		
10.5.1. Tutorials	- Ability to use specific problem solving methods	Homeworks	40%		
10.6. Minimal requirements for passing the exam					

Requirements for mark 5 (10 points scale)

At least 50% of exam score and of homeworks.

Date
Teacher's name and signature

Practicals/Tutorials instructor(s)
name(s) and signature(s)

10.06.2019 Prof. dr. Virgil Baran Lecturer de Peyene 700

Lecturer dr. Roxana Zus

Lecturer dr. Roxana Zus

Date of approval Head of Department

Prof.dr. Virgil Baran

DFC.211.FTC Extensions of the standard model of elementary particles

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2. Course unit								
2.1. Course unit title	Extensions of the standard model of elementary particles							
2.2. Teacher				Prof. Dr. Virgil H	3aran/	Lecturer dr. R	loxana Zus	
2.3. Tutorials/Practicals	s instructor(s)			Lecturer dr. Roxa	ına Zu	IS		
2.4. Year of	2.5.			6. Type of		2.7. Type	Content ¹⁾	DS
study II	Semester	2	eva	aluation	Е	of course		
						unit		
							Type ²⁾	DF
								ac

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	40	Lecture	20	Practicals/Tutorials	20
Distribution of estimated time for stu	dy				hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography			11		
3.2.2. Research in library, study of electronic resources, field research			10		
3.2.3. Preparation for practicals/tutor	ials/pro	ojects/reports/homewo	rks		10
3.2.4. Preparation for exam			4		
3.2.5. Other activities					0

3.3. Total hours of individual study	31
3.4. Total hours per semester	75
3.5. ECTS	3

4. Prerequisites (if necessary)

4.1. curriculum	Quantum field theory, Statistical mechanics, Theory of relativity, Nuclear physics
4.2. competences	Knowledge about: electrodynamics, quantum mechanics

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

¹⁾ deepening (DA), speciality/fundamental (DS);
2) compulsory (DI), elective (DO), optional (DFac)

Professional	
competences	Solving problems of physics under given conditions
	• Use of the physical principles and laws for solving theoretical or practical problems with
	qualified tutoring
	• Rigorous knowledge of quantum field theory, concepts, notions and problems in the area
	of particle physics
	Ability to use this knowledge in interpretation of experimental result and understand
	experiments at CERN; acquire the appropriate understanding of studied fundamental
	mechanisms
Transversal	Efficient use of sources of information and communication resources and training
competences	assistance in a foreign language
	• Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

7. Course objectives

. Course objectives	
7.1. General objective	Understanding the foundations of structure of the matter: fundamental constituents and interactions between them; Understanding the unified theories of physics and their possible extensions.
7.2. Specific objectives	Acquire the skills to describe and calculate the physical properties of quantum fields and their interactions. Development of the skill to apply mathematical models and numerical method for modelling various physical processes

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
The open questions from the standard model	Systematic exposition - lecture. Examples	2 hours
Hierarchy problem. Supersymmetries (SUSY). SUSY Algebra and SUSY Group.	Systematic exposition - lecture. Examples	5 hours
Superfields formulation. Irreducible representation of SUSY. Chiral superfields and vector superfields.	Systematic exposition - lecture. Examples	5 hours
Spontaneous SUSY breaking	Systematic exposition - lecture. Examples	4 hours
Extradimensions	Systematic exposition - lecture. Examples	4 hours

Bibliography:

- 1. S. Weinberg, *The quantum theory of fields*, Vol. III Cambridge University Press, 2005.
- 2. T. Morii, C. S. Lim and S. N. Mukherjee, *The physics of Standard Model and beyond*. World Scientific 2005

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Aspects of grand unification theories (GUT). Magnetic monopoles.	Problem solving	4 hours
Construction of supersymmetric Lagrangians.	Problem solving	4 hours
The Minimal Supersymmetric Standard Model	Problem solving	4 hours

Composite Higgs models: Technicolor, Higgs as Pseudo-Goldstone boson, LHC signatures	Problem solving	4 hours
The role of string theories	Problem solving	4 hours

- 1. S. Weinberg, *The quantum theory of fields*, Vol. III Cambridge University Press, 2005.
- 2. H. Georgi, "The Future Of Grand Unification", Prog. Theor. Phys. Suppl. 170 (2007)
- 3. S. P. Martin, "A Supersymmetry Primer", arXiv:hep-ph/9709356.
- 4. R. Rattazzi, "Cargese lectures on extra dimensions", arXiv:hep-ph/0607055.
- Barton Zwiebach, A first course in string theory, Cambridge University Press, 2009

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

			10.3.
Activity type	10.1. Assessment criteria	10.2. Assessment methods	Weight in
, , , ,			final mark
10.4. Lecture	- Clarity and coherence of	Written test and oral	
	exposition	examination	
	- Correct use of the methods/		60%
	physical models		
	- The ability to give specific		
	examples		
10.5.1. Tutorials	- Ability to use specific problem	Homeworks	40%
	solving methods		
10.6. Minimal requirements for passing the exam			

Requirements for mark 5 (10 points scale)

At least 50% of exam score and of homeworks.

Practicals/Tutorials instructor(s) Teacher's name and signature name(s) and signature(s) Date

10.06.2019 Prof. dr. Virgil Baran Lecturer dr. Roxana Zus

Lecturer dr. Roxana Zus

Head of Department Date of approval

Prof.dr. Virgil Baran