COURSE SHEETS

Type of study full-time (IF) full-time (IF)/ part-time (IFR)/ distance-learning (ID) full-time (IFR)			
Duration	2 years (4 semesters)		
Faculty	FACULTY OF PHYSICS		
Academic field	PHYSICS		
Master study program	PHYSICS OF ADVANCED MATERIALS AND NANOSTRUCTURES / FIZICA MATERIALELOR AVANSATE ȘI NANOSTRUCTURI		

Table of Contents

COURSE SHEETS	1
. Compulsory course units	4
DI.101 Quantum Statistical Physics	4
DI.102 Condensed State Physics	8
DI.103 Group theory and applications in physics1	2
DI.104 Experimental methods in Physics1	5
DI.105 Materials characterization techniques1	.9
DI.106 Ethics and academic integrity2	3
DI.108 Magnetism. Spintronics2	7
DI.109 Organic semiconductors and Applications3	1
DI.110 Preparation methods for nanomaterials3	5

	DI.201 Nanostructures for electronics and optoelectronics	39
	DI.202 Research activity	43
	DI.209 Physics of liquid crystals and polymeric materials	46
	DI.210 Research activity	51
	DI.211 Finalization of master thesis	54
II.	Elective course units	57
	DO.111.1 Physics of mesoscopic systems	57
	DO.111.2 Transport phenomena in disordered materials	61
	DO.111.3 Linear transport theory	65
	DO.203.1 Nonlinear Optics	69
	DO.203.2 Physics of dielectric materials	73
	DO.204.1 Computational methods for electronic structures of materials	77
	DO.204.2 Advanced methods in statistical physics	81
	DO.205.1 Physics of Semiconductor Devices	85
	DO.205.2 Electrical and optical characterization of semiconductors	89
	DO.212.1 Special electronic and opto-electronic devices	94
	DO.212.2 Physics and Technology of Thin Films	99
III.	Optional course units	.104
	DFC.107 Volunteering	.105
	DFC.112 Phase transitions in condensed matter	.108
	DFC.113 Interaction of laser radiation with matter	.112
	DFC.114 Volunteering	.116
	DFC.206 Volunteering	.119
	DFC.207 Computational methods in condensed matter	.122
	DFC.208 Virtual instrumentation and data acquisition	.127
	DFC.213 Volunteering	.130

I. Compulsory course units

DI.101 Quantum Statistical Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics,
	Plasma and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Physics of Advanced Materials and Nanostructures (in
	English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit t	itle	Quantum Statistical Physics							
2.2. Teacher			Prof. Dr. Virgil Baran						
2.3. Tutorials/Practicals instructor(s) Lect. Dr. Ştefan Ghinescu									
2.4. Year of		2.5.		2.6	5. Type of		2.7. Type	Content ¹⁾	DA
study	Ι	Semester	1	eva	aluation	Е	of course		
							unit		
								Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	2	distribution: Lecture	1	Practicals/Tutorials	1
3.2. Total hours per semester	28	Lecture	14	Practicals/Tutorials	14
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					30
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				15	
3.2.4. Preparation for exam					22
3.2.5. Other activities					0
3.3. Total hours of individual study 97					
3.4. Total hours per semester	125				

4. Prerequisites (if necessary)

3.5. ECTS

Quantum mechanics, Classical Statistical Mechanics, Equations of Mathematical 4.1. curriculum

5

	Physics
4.2. competences	Knowledge about: mechanics, thermodynamics, algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

6. Specific competences acquired

Professional	• Identify and proper use of the main physical laws and principles in a given context: the use
competences	of the concepts of quantum statistical physics
	Solving problems of physics under given conditions
	• Use of the physical principles and laws for solving theoretical or practical problems with
	qualified tutoring
	• Rigorous knowledge of quantum theory, concepts, notions and problems in the area of
	many-body systems at finite temperature
	Ability to use this knowledge in various branches of physics
Transversal	• Efficient use of sources of information and communication resources and training assis-
competences	tance in a foreign language
	• Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

7. Course objectives

7.1. General objective	Understanding the fundamental aspects related to the study of quantum	
	statistical physics	
7.2. Specific objectives	Assimilation of formalism of quantum statistical theory: concepts,	
	methods of statistical ensambles, quantum distributions.	
	Explaining the peculiar fenomena of quantum domain, which have no	
	classical analogue.	
	Acquire the skills to describe and calculate the physical properties of	
	quantum systems involved in different physical conditions.	

o. contents		
8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Quantum states. Microstates and macrostates of a quantum system. Statistical (density) operator: definition and properties. Time evolution.	Systematic exposition - lecture. Examples	1 hours
Quantum entropy. Boltzmann-von Neumann formula. Physical interpretation. Principle of maximum entropy. Equilibrium distributions. Statistical operator in equilibrium. Boltzmann- Gibbs formula.	Systematic exposition - lecture. Examples	3 hours
Partition functions: definition and properties. Entropy in thermodynamic equilibrium, natural variables. Equilibrium statistical ensembles. Ensemble averages. Canonical, grand-canonical and microcanonical ensembles.	Systematic exposition - lecture. Examples	2 hours
The indistinguishability of quantum particles. Occupations number representation. Pauli	Systematic exposition - lecture. Examples	4 hours

principle. Applications.		
Grand-canonical partition functions for systems of independent fermions. Fermi-Dirac statistics. Applications.	Systematic exposition - lecture. Examples	2 hours
Grand-canonical partition functions for systems of independent bosons. Bose-Einstein statistics. Applications.	Systematic exposition - lecture. Examples	2 hours
Bibliography:		
 R. Balian, From Microphysics to Macrophys L.D. Landau, E.E. Lifsit, Fizică Statistică, E 	Editura Tehnică	
3. K. Huang, Statistical Mechanics, John Wiley		2017
4. Radu Paul Lungu, Elemente de mecanica stat		2017.
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
The statistical thermodynamics of the ideal fermionic gas. White dwarf stars. Neutron stars.	Problem solving	4 hours
The statistical thermodynamics of the ideal bosonic gas.	Problem solving	4 hours
Statistical mechanics of lattice vibrations. Phonons. Debye model.	Problem solving	2 hours
Heisenberg model and applications.	Problem solving	4 hours
Bibliography:		
1. R. Balian, From Microphysics to Macrophys	ics Vol. 1, 2, Springer 2006	

2. D. Dalvit, J. Frastai, I. Lawrie, Problems on statistical mechanics, IOP 1999.

3. Radu Paul Lungu, Elemente de mecanica statistica cuantica, Editura UB, 2017

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark			
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test and oral examination	60%			
10.5.1. Tutorials	- Ability to use specific problem solving methods	Homeworks	40%			
10.6. Minimal requirements for passing the exam						
Requirements for mark 5						
At least 50% of exam scor	e and of homeworks.					

Date 10.06.2024 Teacher's name and signature

Prof. dr. Virgil Baran

Date of approval 10.06.2024

Practicals/Tutorials instructor(s) name(s) and signature(s)

Lect. dr. Ștefan Ghinescu

Head of Department

Lect. dr. Roxana Zus

DI.102 Condensed State Physics

1. Study program

i study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course titleCondensed I				Matter Physics					
2.2. Teacher			Prof. dr. Daniela Dragoman						
2.3. Tutorials instructor(s)			Conf. dr. Sorin	a Iftin	nie				
2.4. Practicals instructor(s)									
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DS
study	1	Semester	1	evalı	lation	Ε	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					30
3.2.3. Preparation for practicals/tutorial	s/proj	ects/reports/homewor	rks		15
3.2.4. Examination				19	
3.2.5. Other activities					
2.2. Total hours of individual study					

3.3. Total hours of individual study	94
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State Physics
4.2. competences	Computational physics abilities

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	-

6. Acquired specific competencies

Professional	4. Identification and adequate use of the specific laws and concepts of condensed
competencies	matter physics in a given context
	5. Solving physics problems in given conditions
	6. Creative use of acquired knowledge for understanding and modelling of physical processes and properties of condensed matter
	 Analysis and communication of scientific data, communication for physics popularisation.
Transversal	
competencies	8. Efficient use of scientific information and communication resources for professional formation in English.
	9. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

7. Course objectives		
7.1. General objective	Introduction and analysis of the specific physical processes in condensed	
	matter	
7.2. Specific objectives	Study of transport phenomena and of the associated scattering	
	mechanisms.	
	Highlighting at each chapter the applications of the studied phenomena	
	and some problems designed to understand the specific phenomena and to	
	stimulate the creative and critical thinking for solving practical issues.	

o. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations
Introduction: kinetic Boltzmann equation; relaxation time approximation; scattering mechanisms	Systematic exposition - lecture. Examples.	2 hours
Scattering of charge carriers on ionized and neutral impurities. Relaxation time calculation	Systematic exposition - lecture. Examples.	4 hours
Scattering of charge carriers on phonons in nonpolar and polar crystals. Relaxation time calculation	Systematic exposition - lecture. Examples.	4 hours
Electrical resistivity of metals, alloys and semiconductors. Dependencies on temperature and concentration of impurities/defects	Systematic exposition - lecture. Examples.	2 hours
Fundamental transport coefficients. Thermal conductivity of conductors. Lorentz number. Thermal conductivity of insulators	Systematic exposition - lecture. Examples.	4 hours
Thermoelectic effects. Materials' figure of merit	Systematic exposition - lecture. Examples.	2 hours
Onsager relations. Thermo- and galvanomagnetic effects. Spin effects. Spin-orbit coupling	Systematic exposition - lecture. Examples.	4 hours
Dielectric properties of the electron gas. Plasmons	Systematic exposition -	2 hours

atic aupocition	
atic exposition - Examples.	2 hours
atic exposition - Examples.	2 hours
sics, Lecture notes 05, Wiley lers College, 1976. rești 1991	
eaching and learning techniques	Observations
sition. Guided work	2 hours
sition. Guided work	4 hours
sition. Guided work	2 hours
05, Wiley ers College, 1976. Solid State Physics,	Lecture note
eaching and learning techniques	Observations
uided practical work	4 ore
eaching and learning techniques	Observations
G	techniques Guided practical work Teaching and learning

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this course is similar to that of other courses taught at Romanian (Univ. Babeş-Bolyai, Cluj) and foreign (Berkeley University, USA, University of Sheffield, UK, University of Oslo) universities, and is designed such that the student develops abilities of modeling the charge, heat and/or spin transport in condensed matter, and the interactions of solid materials with the electromagnetic field, domains of interest

for research institutes and companies with activities in Condensed Matter Physics, especially Nanotehnologies, as well as in education

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark			
10.4. Lecture	 Clarity, coherence and concision of exposition; Correct use of physical models and of specific mathematical methods; Ability to exemplify 	Written exam	67%			
10.5.1. Tutorials	- Use of specific physical and mathematical methods for solving a given problem;	Written exam	33%			
10.5.2. Practicals						
10.5.3. Project [if applicable]						
10.6. Minimal requirements for passing the exam						
Requirements for mark	5 (10 points scale)					
Correct solving of subject	ts indicated as required for obtaining m	ark 5.				

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2024	Prof. dr. Daniela Dragoman	Conf. dr. Sorina Iftimie
Date of approval 10.06.2024	Head of department, Conf. dr. Adrian Radu	

DI.103 Group theory and applications in physics

1. Study program

i study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Physics of Advanced Materials and Nanostructures (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course title		Gi	Group theory with applications in physics						
2.2. Teacher			Prof. dr. Lucian Ion						
2.3. Tutorials ins	2.3. Tutorials instructor(s) Prof. dr. Lucian Ion								
2.4. Practicals instructor(s)									
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DA
study	1	Semester	1 evaluation		Е	of course	Type ²⁾	DI	

¹⁾ deepening (DA), speciality/fundamental (DS);
 ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	2	distribution: Lecture	1	Practicals/Tutorials	0/1
3.2. Total hours per semester	28	Lecture	14	Practicals/Tutorials	0/14
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					25
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					25
3.2.4. Preparation for exam					17
3.2.5. Other activities					0
3.3. Total hours of individual study	97				

3.4. Total hours per semester	125
3.5. ECTS	5

4. Prerequisites (if necessary)

4.1. curriculum	Linear algebra, Quantum mechanics, Solid State Physics
4.2. competences	Knowledge about: mechanics, solid state physics

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

6. Specific competences acquired

Professional	4. Ability to use knowledge on group theory in various branches of physics
competences	5. Ability of analyse and interpret experimental data, formulate rigorous theoretical
	conclusions.
	6. Ability to employ mathematical models based on symmetries to describe the physical
	phenomena.
	7. Ability to evidence the relation between irreducible representations and invariant
	subspaces of Hilbert space ; evidence the connection between energy spectrum and
	irreducible representations.
Transversal	• Efficient use of scientific information resources and of communication and of resources
competences	for professional formation in English.
	• Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

7. Course objectives

7.1. General objective	Understanding the fundamental aspects related to the study of symme	
	in physics. Expose the basic properties of groups and their matrix	
	representations.	
	The study of the role of group theory in quantum mechanics.	
7.2. Specific objectives	Assimilation of the formalism of group theory: concepts, methods,	
	representations.	
	Acquire the skills to describe and calculate the physical properties of	
	physicsl systems based on symmetries.	

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Introductory notions: symmetries of a physical system, the role of group theory in physics, groups clasification.	Systematic exposition - lecture. Examples	1 hours
Group axioms, group multiplication table, subgroups,mappings of groups, direct product of groups.	Systematic exposition - lecture. Examples	1 hours
Conjugate elements, equivalence classes, invariant subgroups, cosets, quotient group	Systematic exposition - lecture. Examples	1 hours
Matrix representation of a group, equivalent representations, irreducible representation. Schur lemma's.	Systematic exposition - lecture. Examples	1 hours
Orthogonality relations for irreducible representations of a finite group, inequivalent representations for finite groups, characters and their orthogonality relations, character table. Basis functions of irreducible representations.	Systematic exposition - lecture. Examples	2 hours
Crystallographic point groups. Symmetry coordinates. Curie-Neumann symmetry principle. Fundamental theorem of symmetry.	Systematic exposition - lecture. Examples	2 hours

Symmetry of matter tensors. Applications	Systematic exposition - lecture. Examples	2 hours
Space groups. Group of the wave vector. Irreducible representations of space groups.	Systematic exposition - lecture. Examples	2 hours
Energy band models based on symmetry	Systematic exposition - lecture. Examples	2 hours

Bibliography:

10. J.F. Corwell, *Group theory in physics. An Introduction*. Academic Press, 1997.

11. A. Zee, Group theory in a nutshell for physicist, Princeton University Press, 2017

- **12.** M.S. Dresselhaus, G. Dresselhaus, A. Jorio, *Group theory Applications to the Physics of Condensed Matter*, World Scientific, 2008
- **13.** L. Ion, *Lecture notes*

201 21 1011, 200141 0 110100		
8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Basic group theory. Applications.	Problem solving	1 hours
Discrete groups representations.	Problem solving	2 hours
Symmetry of material tensors. Applications	Problem solving	7 hours
Applications to lattice vibrations	Problem solving	2 hours
$k \cdot p$ perturbation theory. Applications	Problem solving	2 hours

Bibliography:

10. A. Zee, *Group theory in a nutshell for physicist*, Princeton University Press, 2017

11. W.K. Tung, Group theory in physics: Problems and solutions, World Scientific, 1991

12. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, *Group theory - Applications to the Physics of Condensed Matter*, World Scientific, 2008

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

First course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to analyze specific examples 	Written exam/oral examination	60%
10.5.1. Tutorials	- Ability to use specific problem solving methods	Written exam/oral examination	40%
10.6. Minimal requireme	nts for passing the exam		
Requirements for mark 5At least 50% of exam score			

Date 10.06.2024	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
10.00.2024	Prof. dr. Lucian Ion	Prof. dr. Lucian Ion
Date of approval		Head of Department
10.06.2024		Conf. dr. Adrian Radu

DI.104 Experimental methods in Physics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study Graduate/Master	
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title	Durse title Experimental methods în Physics								
2.2. Teacher			Conf. dr. Ovidiu Toma, Conf. dr. Adriana Bălan						
2.3. Tutorials instructor(s)									
2.4. Practicals instructor(s)		Conf. dr. Ovidiu Toma, Conf. dr. Adriana Bălan							
2.5. Year of		2.6.			Type of		2.8. Туре	Content ¹⁾	DA
study	1	Semester	2 evaluation		E	of course unit	Type ²⁾	DI	

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	3	distribution: lecture	2	Tutorials/Practicals	0/1
3.2. Total hours per semester	42	distribution: lecture	28	Tutorials/Practicals	0/14
Distribution of estimated time for study	7	·			hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					25
3.2.2. Research in library, study of electronic resources, field research					25
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					13
3.2.4. Examination				20	
3.2.5. Other activities					
3.3. Total hours of individual study	83				

	03
3.4. Total hours per semester	125
3.5. ECTS	5

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Solid state physics
4.2. competences	8. Using of software tools for data analysis/processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	- research infrastructure for morphological, optical, magnetic and
	microstructural characterizations

6. Acquired specific competencies

I	
Professional	1. Use of methods for morphological, optical, magnetic and microstructural
competencies	characterizations.
	2. Knowledge of physics of interaction of radiation with matter
	3. Creative use of acquired physical knowledge related to morphological, optical, magnetic and microstructural characterizations.
	 Analysis and communication of scientific data, communication for physics popularisation.
	5. Use of specific software tools.
	5. Ose of specific software tools.
Transversal competencies	6. Efficient use of scientific information resources and of communication and of resources for professional formation in English.
	7. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

,, , ,, , ,, , ,, , ,, , , , , , , , , , , , , , , , , , , ,		
7.1. General objective	Introduction to techniques for microstructural, morphological, magnetic	
	and optical characterizations of materials	
7.2. Specific objectives	Study of magnetic properties of materials	
	AFM studies of surface morphology	
	Measuring optical coefficients of thin films	
	Micro-structural studies based on ion beams	
	Highlighting of essential problems in understanding of specific	
	phenomena, in order to stimulate creative and critical thinking în solving	
	problems.	

8.1. Lecture [chapters]	Teaching techniques	Observations
Atomic force microscopy (AFM) – physical principles. Working modes (non-contact, contact). Characterization of surface morphology. Magnetic force microscopy (MFM), Scanning tunneling microscopy (STM). Applications	Systematic exposition - lecture. Examples.	10 hours

Ellipsometry. Physical principles. Optical coefficients of thin films.	Systematic exposition - lecture. Examples.	18 hours
 References: 1. M. Fox, Optical properties of solids (Oxford Ur 2. A. Bălan, AFM - Caracterizări morfologice 	iiversity Press, Oxford, UK, 20	01).
8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
Bibliography:		
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
AFM in contact and non-contact mode. Surface morphology characterizations	Guided practical work	6 hours
MFM experiments	Guided practical work	2 hours
Ellipsometric measurements. Dispersion of optical coefficients of thin films.	Guided practical work	6 hours
8.4. Research project [if applicable]	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	 Explicitness, coherence and concision of scientific statements; Correct use of physical models and of specific mathematical methods; Ability to analyse specific examples; 	Written and oral exam	50%
10.5.1. Tutorials	- Use of specific physical and mathematical methods and techniques;		
10.5.2. Practicals	 Knowledge and correct use of specific experimental techniques Data processing and analysis; 	Colloquium	50%

10.5.3. Project [if applicable]				
10.6. Minimal requirements for passing the exam				
1	1 0			
Requirements for mark 5				
Correct solving of subjects	indicated as required for o	btaining mark 5.		

Date

Teacher's name and signature

25.05.2024

Conf. dr. Ovidiu Toma Conf. dr. Adriana Bălan

Date of approval 10.06.2024

lan Conf. dr. Adriana Bălan Head of department, Conf. dr. Adrian Radu

Practicals/Tutorials instructor(s) name(s) and signature(s)

Conf. dr. Ovidiu Toma

DI.105 Materials characterization techniques

1. Study program

University of Bucharest
Faculty of Physics
Electricity, Solid State Physics and Biophysics
Physics
Graduate/Master
Physics of advanced materials and nanostructures (in
English)
Full-time study

2. Course unit

2.1. Course titleMaterials characteristic			aracterization	techni	ques				
2.2. Teacher			Prof. dr. Lucian Ion						
2.3. Tutorials instructor(s)									
2.4. Practicals instructor(s)		Prof. dr. Lucian Ion, Asist. Iulia Zai							
2.5. Year of		2.6.			Гуре of		2.8. Type	Content ¹⁾	DS
study	1	Semester	er 2 evalu		lation	E	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	3	distribution: lecture	2	Tutorials/Practicals	0/1
3.2. Total hours per semester	42	distribution: lecture	28	Tutorials/Practicals	0/14
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					25
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					35
3.2.4. Examination					18
3.2.5. Other activities					
3.3 Total hours of individual study					

3.3. Total hours of individual study	108
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State
	Physics, Electrodynamics
4.2. competences	Computational physics abilities

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	Research infrastructure for structural/optical characterization

6. Acquired specific competencies

	· · · · · · · · · · · · · · · · · · ·
Professional	8. Identification and adequate use of the specific laws and concepts of condensed
competencies	matter physics in a given context – knowledge of crystalline structure of
	(nano)materials
	9. Creative use of acquired knowledge for understanding and modelling of structural
	and optical properties of condensed matter
	10. Solving physics problems in given conditions
	11. Analysis and communication of scientific data, communication for physics
	popularisation.
Transversal	
competencies	12. Efficient use of scientific information and communication resources for
	professional formation in English.
	13. Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

7. Course objectives

/ Gourse objectives	
7.1. General objective	Analysis of structural and optical properties of (nano)materials
7.2. Specific objectives	Study of crystalline structure of materials
	Description of experimental techniques for structural investigations based
	on scattering of X-rays and thermal neutrons
	Study of optical transitions in semiconductors
	Highlighting of specific problems designed to understand the specific
	phenomena and to stimulate the creative and critical thinking for solving
	practical issues.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations
Generation and properties of X-rays	Systematic exposition -	2 hours
	lecture. Examples.	2 nours
Crystalline structures. Symmetry properties.	Systematic exposition -	6 hours
Classification. Point groups. Space groups.	lecture. Examples.	
Elastic scattering of X-rays and thermal neutrons.	Systematic exposition -	8 hours
Structure factor. Ewald's sphere. Structure of X-ray	lecture. Examples.	
diffraction pattern		
Real crystals: size effects, structural disorder and	Systematic exposition -	8 hours
temperature effects	lecture. Examples.	
Electrical characterizations. Temperature dependent	Systematic exposition -	4 hours
resistivity and Hall effect	lecture. Examples.	
Deferences:		

References:

3. P.Y. Yu, M. Cardona, *Fundamentals of semiconductors – physics and materials properties* (Springer, Berlin, Germany, 2005), 3-rd ed.

4. M. Fox, Optical properties of solids (Oxford University Press, Oxford, UK, 2001).

5. C. Giacovazzo (ed.), Fundamentals of Crystallography (Oxford University Press, Oxford, UK, 2002),

2-nd. ed..

6. Y. Waseda, E. Matsubara, K. Shinoda, X-ray Diffraction Crystallography (Springer Verlag, Berlin, Germany, 2011)

Germany, 2011)		
7. L. Ion, Lecture notes		
8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
	Exposition. Guided work	
Bibliography:		
9.		
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
Symmetry of crystalline structures. Point group. Space group.	Guided practical work	2 hours
X-ray diffraction. Determination of interplanar distances and of lattice constants. Identification of crystalline phases.	Guided practical work	4 hours
X-ray diffraction. Quantitative analysis. Williamson Hall plot. Rietveld method.	Guided practical work	4 hours
Ultrathin films. Grazing incidence X-ray diffraction.	Guided practical work	2 hours
X-ray reflectometry. Quantitative determinations	Guided practical work	2 hours

Bibliografie:

(surface rugosity, thickness).

2 hours

^{2.} P.Y. Yu, M. Cardona, Fundamentals of semiconductors – physics and materials properties (Springer, Berlin, Germany, 2005), 3-rd ed.

8.4. Research project [if applicable]	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this course is similar to that of other courses taught at Romanian and foreign universities, and is designed such that the student develops abilities of investigating the crystalline structure and the interactions of solid materials with the electromagnetic field, domains of interest for research institutes and companies with activities in Condensed Matter Physics, especially Nanotehnologies, as well as in education.

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	 Clarity, coherence and concision of exposition; Correct use of physical models and of specific mathematical methods; Ability to exemplify 	Written exam	75%
10.5.1. Tutorials			
10.5.2. Practicals	- Use of structure investigation		

^{1.} L. Ion, Tehnici de investigare structurală și morfologică bazate pe împrăștierea razelor X (îndrumător de laborator)

	techniques-	Lab reports	25%	
	- Ability to analyse experimental data			
10.5.3. Project [if				
applicable]				
10.6. Minimal requirements for passing the exam				
Requirements for mark 5 (10 points scale)				
Correct solving of subjects indicated as required for obtaining mark 5.				

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2024	Prof. dr. Lucian Ion	
		Prof. dr. Lucian Ion
		Asist. Iulia Zai
Date of approval	Head of	department,
10.06.2024	Conf. dr.	Adrian Radu

DI.106 Ethics and academic integrity

1. Study program

University of Bucharest
Faculty of Physics
Structure of Matter, Atmosphere and Earth Physics, Astrophysics
Physics
Graduate/Master
Physics of advanced materials and nanostructures (in English)
Full-time study

2. Course unit

2.1. Course unit title		Ethics and	academi	c integrity				
2.2. Teacher				Lecturer PhD	Sand	a Voinea		
2.3. Tutorials/Practicals instructor(s)								
2.4. Year of study		2.5.		2.6. Type of		2.7. Type of	Content ¹⁾	DA
		Semester		evaluation	C	course unit	Type ²⁾	DI

1) fundamental (DF), speciality (DS), complementary (DC); 2) compulsory (DI), elective (DO), optional (Dfac)

3. Total estimated time (hours/semester)

curriculumIDescriptionDescription3.2. Total hours per semester14distribution:Lectures14Tutorials0Practicals0Project0	0 0 hours				
semester	-				
3.3 Distribution of estimated time for study	hours				
5.5 Distribution of estimated time for study					
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					
3.3.2. Research in library, study of electronic resources, field research					
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks					
3.3.4. Examination					
3.3.5. Other activities					
3.4. Total hours of individual study 61					
3.5. Total hours per semester75					
3.6. ECTS 3					

4. Prerequisites (if necessary)

	· · · · · · · · · · · · · · · · · · ·
4.1. curriculum	
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia room
5.2. for practicals/tutorials/projects	

6. Specific competences acquired

Professional	Understanding and acquiring the skills characteristic of an integrity physicist, understanding
competences	and using the practices that characterize the scientific and academic community.
Transversal	Understanding the importance of academic integrity for the functioning of acciety
competences	Understanding the importance of academic integrity for the functioning of society

7. Course objectives

7.1. General objective	Development of moral thinking and integration of students in the ethical culture of the university.
7.2. Specific objectives	Integration of scientific research into the moral culture, Consolidation of autonomy in the moral decision, Internalization of good practices of intellectual conduct.

8. Contents

8. Contents		
8.1. Lectures [chapters]	Teaching techniques	Observations
Moral evaluation frameworks. How do we analyze an ethical issue?	Lecture. Example.	2 hours
Fundamental concepts of ethics.	Discussion.	
Ethics and the scientific community.		
Criteria for moral evaluation: consequences / intentions, virtues.		
Systematic exposition - lecture. Example. Discussion.		
Academic integrity: institutional tools.	Lecture. Example.	2 hours
Codes and ethics commissions.	Discussion.	
The virtues of an integral academic organization.		
Ethical evaluation and endorsement of research projects: why it is		
necessary and how it is done.		
UB's ethical culture. Who do we turn to solve a moral problem?		
The specifics of academic ethics.	Lecture. Example.	2 hours
Research ethics, professional ethics.	Discussion.	
Immoral behaviors in academic organizations (typology and		
consequences).		
Ethics and academic performance.		
Principles of research ethics. Academic freedom and disagreement in	Lecture. Example.	2 hours
science. Precautionary principle and risky research (e.g.with dual	Discussion.	
use). Informed consent and respect for autonomy. Challenges and		
dilemmas in research ethics.		
Plagiarism and self-plagiarism. Falsification or fabrication of	Lecture. Example.	6 hours
research results. Originality of results Ethics of publication: author	Discussion.	
and co-author. Access to resources (justice and equity in academic		
organizations and research teams). Deontology of teamwork in		
scientific research. Implications and results of collaboration. Respect		
for intellectual property. Copyright. Academic writing. How to write		
an academic paper.		

Bibliografie:

1. Julian Baggini, Peter S. Fosl, A Compendium of Ethical Concepts and Methods, Blackwell Publishing, 2014.

2.Blaxter, L, Hugh, C. Tight, L. How to research, New York, 2006

3. Angelo Corlett. "The Role of Philosophy in Academic Ethics", Journal of Academic Ethics, Volume 12, Issue 1, pp 1–14, 2014

4. A. Avram, C. Berlic, B. Murgescu, Mirela Luminița Murgescu, M. Popescu, Cosima Rughiniș, D. Sandu, E. Socaciu, Emilia Șercan, B. Ștefănescu, Simina Elena Tănăsescu, Sanda Voinea, Coordonator L. Papadima, "Deontologie academică. Curriculum-cadru", Editura Universitatii din București, 2017.

5. Codul de etică al Universității din București https://unibuc.ro/wp-content/uploads/2021/01/CODUL-DE-

ETICA-SI-DEONTOLOGIE-AL-UNIVERSITATII-DIN-BUCURESTI-2020-1.pdf

6. Carta UNIBUC (https://unibuc.ro/wp-content/uploads/2018/12/CARTA-UB.pdf)

7. Joshua D. Greene, et. al. "An fMRI investigation of emotional engagement in moral judgment." Science, 2001.

8. Neil Hamilton. Academic Ethics, Westport: Praeger Publishers, 2002

9. Bruce Macfarlane. Researching with Integrity. The Ethics of Academic Enquiry, London: Routledge, 2009.

10. James Rachels, Introducere în Etică, traducere de Daniela Angelescu, Editura Punct, 2000.

11. Ebony Elizabeth Thomas and Kelly Sassi, "An Ethical Dilemma: Talking about Plagiarism and Academic Integrity in the Digital Age", English Journal 100.6, pp. 47–53, 2011

12. Anthony Weston, A Practical Companion to Ethics, Oxford University Press, 2011

13. Barrow, R., Keeney, P. (eds), Academic Ethics, New York: Routledge, 2006

14. Bretag, T. (ed), Handbook of Academic Integrity, Singapore: Springer, 2016

15. Davis, M., Ethics and the University, New York: Routledge, 1999

16. De George, R., T., Academic Freedom and Tenure: Ethical Issues, Oxford: Rowman & Littlefield Publishers, 1997

8.2. Tutorials	Teaching and learning techniques	Observations
Bibliography:		
8.3. Practicals	Teaching and learning techniques	Observations
Bibliography:		
8.4. Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The course addresses the most discussed theoretical issues in the area of academic ethics, along with their practical impact implications. The content of the course is consistent with the content of similar courses taught at universities in the country (Babeş-Bolyai University, Cluj Napoca, "Alexandru Ioan Cuza" University of Iasi) and major universities abroad, providing students with tools for moral decision and ethics that can be used by students in their academic activity and in their professional life.

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	Originality Critical spirit Academic writing Knowledge of the rules of academic ethics	Elaboration of an essay with a topic presented in the course	100%

10.5.1. Tutorial						
10.5.2. Practical						
10.5.3. Project						
10.6. Minimal requirements for passing the exam						
Complete solving of the subjects indicated for obtaining the ADMITTED qualifier.						
At least 50% compulsory attendance						

Date

Teacher's signature

18.09.2024

Lector. dr. Sanda Voinea

Date of approval 20.09.2024

Head of department, Lector. dr. Sanda Voinea

signature(s)

Practicals/Tutorials instructor(s)

Lector. dr. Sanda Voinea

DI.108 Magnetism. Spintronics.

1. Study program

i study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title		N	Magnetism. Spintronics						
2.2. Teacher					Prof. dr. George Alexandru NEMNES				
2.3. Tutorials instructor(s)				Prof. dr. Georg	e Alez	kandru NEMI	NES		
2.4. Practicals instructor(s)									
2.5. Year of		2.6.		2.7.	Type of		2.8. Type	Content ¹⁾	DA
study	1	Semester	2 evaluatio		lation	Е	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	Lectures	2	Tutorials	1	Practicals	1	Project	0
3.2. Total hours per semester	56	distribution:	Lectures	28	Tutorials	14	Practicals	14	Project	0
3.3 Distribution of est	3.3 Distribution of estimated time for study								hour	
										s
3.3.1. Learning by using one's own course notes, manuals, lecture notes, bibliography							60			
3.3.2. Research in library, study of electronic resources, field research								40		
3.3.3. Preparation for practicals/tutorials/projects/reports/homeworks								40		
3.3.4. Examination							4			
3.3.5. Other activities							0			
3.4. Total hours of individual study 144										
3.5. Total hours per semester 200										

3.6. ECTS

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Solid State I, Thermodynamics and statistical physics, Physical Electronics, Equations of mathematical physics
4.2. competences	- Using of software tools for data analysis/processing

8

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	-

6. Acquired specific competencies

or i requii eu speen	
Professional	C1 – Identification and correct use of physical laws and principles in given
competencies	contexts
1	C3 – Solving of physics problems in imposed conditions
	C4 – Performing of physics experiments by using standard laboratory
	equipments
	C5 – Analysis and communication/presentation of scientific data
Transversal	
competencies	
	CT3 – Efficient use of the sources of scientific information and communication of scientific data in
	English

7. Course objectives

7.1. General objective	Investigation of magnetic properties of materials and spin transport in
	electronic devices.
7.2. Specific objectives	- Understanding the origin of the magnetism from fundamental
	perspective.
	- Indepth understanding of magnetic interactions.
	- Analysis of specific spin and charge transport models.
	- The capacity to analyze and interpret experimental data and formulate
	rigorous theoretical conclusions.
	- The capacity to employ mathematical and numerical models for
	modelling the physical phenomena.

8.1. Lecture [chapters]	Teaching techniques	Observations
Introduction. Magnetic materials. Magnetic suceptibility. Types of magnetism.	Systematic exposition - lecture. Examples.	2 hours
Langevin paramagnetism. Pauli paramagnetism.	Systematic exposition - lecture. Examples.	2 hours
Langevin diamagnetism. Landau levels. Pauli diamagnetism for free electrons.	Systematic exposition - lecture. Examples.	4 hours
Ferromagnetism. Curie-Weiss law. Stoner criterion.	Systematic exposition - lecture. Examples.	2 hours
Exchange integral. Super-exchange and double-exchange interaction. RKKY interaction.	Systematic exposition - lecture. Examples.	4 hours
Spin glasses. Dynamical properties. Phase transitions.	Systematic exposition - lecture. Examples.	4 hours
Giant magnetoresistance. Rashba and Dresselhaus spin-orbit interaction. Datta-Das field effect transistor.	Systematic exposition - lecture. Examples.	4 hours
Spin relaxation mechanisms. Spin scattering on magnetic impurities. Spin filters.	Systematic exposition - lecture. Examples	4 hours
Magnetic domains. FORC diagrams.	Systematic exposition - lecture. Examples	2 hours
References:		

- 14. R.M. White, Quantum Theory of Magnetism (Springer, Berlin, 1983).
- **15.** R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, UK, 2004)
- **16.** P. Mohn, *Magnetism in the solid state* (Springer, Berlin, 2002) Teruya Shinjo, *Nanomagnetism and Spintronics* (Elsevier, Amsterdam, 2009)

17. I. Munteanu, <i>Fizica solidului</i> (Editura Universității din București, 2003)						
8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations				
Paramagnetic materials. Applications.	Exposition. Guided work	4 hours				
Diamagnetic materials. Applications.	Exposition. Guided work	4 hours				
Exchange interaction. Applications of Hartree-Fock approximation.	Exposition. Guided work	2 hours				
Charge and spin transport in magnetic quantum wires. Introduction to <i>ab initio</i> models.	Exposition. Guided work	4 hours				

Bibliography:

- 10. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, UK, 2004)
- 11. P. Mohn, *Magnetism in the solid state* (Springer, Berlin, 2002) Teruva Shinio. *Nanomagnetism and Spintronics* (Elsevier, Amsterdam, 2009)

Teruya Simijo, Nunomagnetism and Spintronics (.	Lisevier, Amsteruam, 2009)		
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations	
Ising spin models. Ferromagnets, antiferromagnets and spin glasses.	Guided practical work	6 ore	
Spin scattering in graphene nanoribbons.	Guided practical work	4 ore	
FORC diagrams. Identification of magnetic domain structures.	Guided practical work	4 ore	
8.4. Research project [if applicable]	Teaching and learning techniques	Observations	
Bibliography:			

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	Explicitness, coherence and concision of scientific statements;Correct use of physical models	Written and oral exam	50%
	and of specific mathematical		

	methods; - Ability to analyse specific examples;				
10.5.1. Tutorials	- Use of specific physical and mathematical methods and techniques;	Homework, research projects	25%		
10.5.2. Practicals	 Knowledge and correct use of specific experimental techniques Data processing and analysis; 	Colloquium	25%		
10.5.3. Project [if applicable]					
10.6. Minimal requireme	nts for passing the exam				
Requirements for mark 5 (10 points scale)					
To obtain grade 5:					
- Performing all experiments, presentation of Lab reports and grade 5 at Colloquium					

- Correct solution for indicated subjects in homeworks and the final exam

- Knowledge of basic elements: types of magnetic materials, exchange integral, Rashba and Dresselhaus spin-orbit interaction, Ising Hamiltonian, FORC diagrams.

Requirements for getting mark 10 (10 points scale)

- Correct solutions to the written exam, homeworks and colloquium

- Demonstrated ability to analyze phenomena and processes

Minimum participation: 50% lectures and 100% labs.

or(s)
Nemnes

DI.109 Organic semiconductors and Applications

1. Study program

University of Bucharest
Faculty of Physics
Electricity, Solid State Physics and Biophysics
Physics
Graduate/Master
Physics of advanced materials and nanostructures (in
English)
Full-time study

2. Course unit

2.1. Course title	e Organic sem			niconductors an	d app	lications			
2.2. Teacher			Prof. dr. Ştefan	Anto	he				
2.3. Tutorials ins	structor(s	5)							
2.4. Practicals in	racticals instructor(s)		Prof. dr. Ştefan Antohe, Conf. dr. Sorina Iftimie						
2.5. Year of		2.6.		2.7.	Type of		2.8. Type	Content ¹⁾	DS
study	1	Semester			lation	Ε	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	0/1
3.2. Total hours per semester		distribution: lecture	28	Tutorials/Practicals	0/14
Distribution of estimated time for study				1	hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography			bibliography	35	
3.2.2. Research in library, study of electronic resources, field research				30	
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				35	
3.2.4. Examination			33		
3.2.5. Other activities					
3.3. Total hours of individual study					

	133
3.4. Total hours per semester	175
3.5. ECTS	7

4. Prerequisites (if necessary)

4.1. curriculum	Quantum Mechanics, Solid State Physics 1, Electricity and Magnetism,
	Electrodynamics
4.2. competences	12. Understanding peculiarities of electron states in organic semiconductors
	13. Knowledge and understanding of peculiarities of transport and optical
	phenomena in organic semiconductors
	14. Understanding underlying physical phenomena
	15. Ability to analyze and understand relevant experimental data and to formulate

rigorous conclusions	
----------------------	--

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, video-projector, internet connection)
5.2. for tutorials/practical	• Experimental set-ups in Thin Films Laboratory and Nanotechnology
classes	Laboratory of Materials and Devices for Electronics and
	Optoelectronics R&D Center

6. Acquired specific competencies

or riequit eu speen.	
Professional	1. Identification and adequate use of physics laws in a given context; identification
competencies	and adequate use of notions and specific physics laws for organic semiconductors.
	2. Solving physics problems in given conditions.
	3. Creative use of acquired physical knowledge to understand and to construct
	models for physical processes and properties of organic semiconductors.
	4. Analysis and communication of scientific data.
	5. Use and development of specific laboratory equipments.
Transversal competencies	 Efficient use of scientific information resources for professional formation in English. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

7. Course objectives	
7.1. General objective	Introduction and development of organic semiconductors by physical and
	chemical methods for electronic and optoelectronic applications
7.2. Specific objectives	Introduction to small molecules organic semiconductors, aromatic
	hydrocarbon, organic dyes, donor-acceptor complexes, and
	semiconducting polymers
	Study of intermolecular interactions in organic solids
	Molecular orbitals, molecular excited states, band structure of molecular
	crystals
	Excitons in organic solids, Mott-Wannier excitons, Frenkel excitons, Le
	Blanc's model, Katz-Rice-Chois-Jortner model
	Transport mechanism in organic solids, anisotropy of conductivity
	Highlighting of essential problems in understanding of specific
	phenomena, in order to stimulate creative and critical thinking.

o. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations
Structural properties of organic semiconductors: correlation between chemical structure and semiconducting properties	Systematic exposition - lecture. Examples.	4 hours
Crystalline structure of organic semiconductors: structure of small molecular weight organic solids, structure of large molecular weight solids, point-like defects, diffusion in organic solids, diffusion mechanisms, methods to determine the diffusion coefficient, doping of organic semiconductors	Systematic exposition - lecture. Examples.	4 hours
Electron structure of organic solids: intermolecular interactions in organic solids	Systematic exposition - lecture. Examples.	4 hours

	Systematic exposition - lecture. Examples.	2 hours
Energy transfer in organic solids	Systematic exposition -	2 110013
Energy transfer in organic solids	lecture. Examples.	2 hours
Excitons: Mott-Wannier excitons, Frenkel excitons.	Systematic exposition -	2 110013
Excitons. Woll-wainner excitons, Frenker excitons.	lecture. Examples.	2 hours
Exciton diffusion, exciton triplets, influence of lattice	Systematic exposition -	2 110013
defects on exciton diffusion.	lecture. Examples.	
	*	2 hours
Polarons in molecular crystals.	Systematic exposition -	
	lecture. Examples.	2 hours
Charge transport in organic solids: transport	Systematic exposition -	
mechanisms in organic solids – tunnel effect, hopping mechanism	lecture. Examples.	
		2 hours
Charge transport in organic solids: transport	Systematic exposition -	
mechanisms in organic solids - band transport	lecture. Examples.	
mechanism, activation energy, anisotropy of		
conductivity, influence of pressure on dark		
conductivity of organic solids		4 hours
 (American Scientific Publishers, Los Angeles, C 10. S. Antohe, S. Iftimie, L. Hrostea, V.A. Antoh based on organic monomeric and polymeric th 231, 2017. 11. N.F. Mott, E.A. Davis, <i>Electron processes in</i> 	e, M. Girtan, A critical review	
 1979). 12. W. Helfrich, <i>Physics and Chemistry of the Orga</i> 13. Lecture notes available on http://solid.fizica.unil 8.2. Tutorials [main tutorial subjects] 	nic Solid State (Wiley Intersciend	ce, New York, 1967).
1979).12. W. Helfrich, <i>Physics and Chemistry of the Orga</i>13. Lecture notes available on http://solid.fizica.unil	nic Solid State (Wiley Interscience	
1979).12. W. Helfrich, <i>Physics and Chemistry of the Orga</i>13. Lecture notes available on http://solid.fizica.unil	nic Solid State (Wiley Intersciend ouc.ro. Teaching and learning	ce, New York, 1967).
1979).12. W. Helfrich, <i>Physics and Chemistry of the Orga</i>13. Lecture notes available on http://solid.fizica.unil	nic Solid State (Wiley Intersciend ouc.ro. Teaching and learning	ce, New York, 1967).
 1979). 12. W. Helfrich, <i>Physics and Chemistry of the Orga</i> 13. Lecture notes available on http://solid.fizica.unil 8.2. Tutorials [main tutorial subjects] 8.3. Practicals [research subjects, projects] Preparation methods for organic thin films 	nic Solid State (Wiley Intersciend ouc.ro. Teaching and learning techniques Teaching and learning	ce, New York, 1967). Observations Observations 4 hours
 1979). 12. W. Helfrich, <i>Physics and Chemistry of the Orga</i> 13. Lecture notes available on http://solid.fizica.unil 8.2. Tutorials [main tutorial subjects] 8.3. Practicals [research subjects, projects] Preparation methods for organic thin films Surface topography investigations of organic 	nic Solid State (Wiley Intersciend ouc.ro. Teaching and learning techniques Teaching and learning techniques Guided practical work	ce, New York, 1967). Observations Observations
 1979). 12. W. Helfrich, <i>Physics and Chemistry of the Orga</i> 13. Lecture notes available on http://solid.fizica.unil 8.2. Tutorials [main tutorial subjects] 8.3. Practicals [research subjects, projects] Preparation methods for organic thin films Surface topography investigations of organic semiconductors by atomic force microscopy (AFM) 	nic Solid State (Wiley Intersciend ouc.ro. Teaching and learning techniques Teaching and learning techniques	ce, New York, 1967). Observations Observations 4 hours 2 hours
 1979). 12. W. Helfrich, <i>Physics and Chemistry of the Orga</i> 13. Lecture notes available on http://solid.fizica.unil 8.2. Tutorials [main tutorial subjects] 8.3. Practicals [research subjects, projects] Preparation methods for organic thin films Surface topography investigations of organic semiconductors by atomic force microscopy (AFM) Morphological analysis of organic semiconductors by 	nic Solid State (Wiley Intersciend Duc.ro. Teaching and learning techniques Teaching and learning techniques Guided practical work Guided practical work	ce, New York, 1967). Observations Observations 4 hours
 1979). 12. W. Helfrich, <i>Physics and Chemistry of the Orga</i> 13. Lecture notes available on http://solid.fizica.unil 8.2. Tutorials [main tutorial subjects] 8.3. Practicals [research subjects, projects] Preparation methods for organic thin films Surface topography investigations of organic semiconductors by atomic force microscopy (AFM) Morphological analysis of organic semiconductors by scanning electron microscopy (SEM) 	nic Solid State (Wiley Intersciend Duc.ro. Teaching and learning techniques Teaching and learning techniques Guided practical work Guided practical work	ce, New York, 1967). Observations Observations 4 hours 2 hours 4 hours
 1979). 12. W. Helfrich, <i>Physics and Chemistry of the Orga</i> 13. Lecture notes available on http://solid.fizica.unil 8.2. Tutorials [main tutorial subjects] 8.3. Practicals [research subjects, projects] Preparation methods for organic thin films Surface topography investigations of organic semiconductors by atomic force microscopy (AFM) Morphological analysis of organic semiconductors by scanning electron microscopy (SEM) Electrical behavior of organic semiconductors 	nic Solid State (Wiley Intersciend Duc.ro. Teaching and learning techniques Teaching and learning techniques Guided practical work Guided practical work Guided practical work	ce, New York, 1967). Observations Observations 4 hours 2 hours 4 hours 2 hours 2 hours
 1979). 12. W. Helfrich, <i>Physics and Chemistry of the Orga</i> 13. Lecture notes available on http://solid.fizica.unil 8.2. Tutorials [main tutorial subjects] 8.3. Practicals [research subjects, projects] Preparation methods for organic thin films Surface topography investigations of organic semiconductors by atomic force microscopy (AFM) Morphological analysis of organic semiconductors by scanning electron microscopy (SEM) 	nic Solid State (Wiley Intersciend Duc.ro. Teaching and learning techniques Teaching and learning techniques Guided practical work Guided practical work	ce, New York, 1967). Observations Observations 4 hours 2 hours 4 hours
 1979). 12. W. Helfrich, <i>Physics and Chemistry of the Orga</i> 13. Lecture notes available on http://solid.fizica.unil 8.2. Tutorials [main tutorial subjects] 8.3. Practicals [research subjects, projects] Preparation methods for organic thin films Surface topography investigations of organic semiconductors by atomic force microscopy (AFM) Morphological analysis of organic semiconductors by scanning electron microscopy (SEM) Electrical behavior of organic semiconductors 	nic Solid State (Wiley Intersciend Duc.ro. Teaching and learning techniques Teaching and learning techniques Guided practical work Guided practical work Guided practical work	ce, New York, 1967). Observations Observations 4 hours 2 hours 4 hours 2 hours 2 hours
 1979). 12. W. Helfrich, <i>Physics and Chemistry of the Orga</i> 13. Lecture notes available on http://solid.fizica.unil 8.2. Tutorials [main tutorial subjects] 8.3. Practicals [research subjects, projects] Preparation methods for organic thin films Surface topography investigations of organic semiconductors by atomic force microscopy (AFM) Morphological analysis of organic semiconductors by scanning electron microscopy (SEM) Electrical behavior of organic semiconductors Optical characterization of organic semiconductors 	nic Solid State (Wiley Intersciend Duc.ro. Teaching and learning techniques Teaching and learning techniques Guided practical work Guided practical work Guided practical work Guided practical work Guided practical work Teaching and learning	ce, New York, 1967). Observations Observations A hours 2 hours 4 hours 2 hours 2 hours

• S. Antohe, L. Ion, F. Stanculescu, S. Iftimie, A. Radu and V. A. Antohe, "Fizica si tehnologia materialelor semiconductoare – Lucrari practice", Ars Docendi, Universitatea din Bucuresti, 165 pages, 2016, ISBN: 978-973-558-940-0

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

10. Assessment

10. Assessment			10.3.	
Activity type	10.1. Assessment criteria	10.2. Assessment methods	Weight în	
5 51			final mark	
10.4. Lecture	 Explicitness, coherence and concision of scientific statements; Correct use of physical models and of specific mathematical methods; Ability to analyze specific examples; 	Written exam	70%	
10.5.1. Tutorials				
10.5.2. Practicals	 Knowledge and correct use of specific experimental techniques Data processing and analysis; 	Colloquium	30%	
10.5.3. Project [if applicable]				
10.6. Minimal requirements for passing the exam				
Requirements for mar				
Correct solving of subje	cts indicated as required for obtaining m	nark 5.		

DateTeacher(s) name and signaturePracticals/Tutorials instructor(s)
name(s) and signature(s)25.05.2024Prof. dr. Ştefan AntoheProf. dr. Ştefan Antohe

Date of approval 10.06.2024

Head of department, Assoc. Prof. dr. Adrian Radu

DI.110 Preparation methods for nanomaterials

1. Study program

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title	Preparation I				methods for na	noma	terials		
2.2. Teacher			Conf. dr. Sorin	a Iftin	nie				
2.3. Tutorials instructor(s)									
2.4. Practicals instructor(s)			Conf. dr. Sorin	a Iftin	nie				
2.5. Year of		2.6.			Гуре of		2.8. Type	Content ¹⁾	DS
study	1	Semester	2 evalu		lation	E	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography			35		
3.2.2. Research in library, study of elec	tronic	resources, field resea	arch		40
3.2.3. Preparation for practicals/tutorial	ls/proj	ects/reports/homewo	rks		35
3.2.4. Examination				34	
3.2.5. Other activities					
3.3. Total hours of individual study					

3.3. Total hours of individual study	144
3.4. Total hours per semester	200
3.5. ECTS	8

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Thermodynamics, Solid State Physics I, Optics		
4.2. competences	1. Knowledge of modern technologies for producing nanomaterials and		
	nanostructures		
	2. Understanding underlying physical phenomena		
	3. Ability to analyze and understand relevant experimental data and to formulate		
	rigorous conclusions		

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, video-projector, internet connection)			
5.2. for tutorials/practical	• Experimental set-ups in Thin Films Laboratory and Nanotechnology			
classes	Laboratory of Materials and Devices for Electronics and			
	Optoelectronics R&D Center			

6. Acquired specific competencies

0. Acquireu speen	
Professional	1. Identification and adequate use of physics laws in a given context; identification
competencies	and adequate use of notions and specific physics laws for nanostructures.
	2. Solving physics problems in given conditions.
	3. Creative use of acquired physical knowledge to understand and to construct
	models for physical processes and properties of nanostructures.
	4. Analysis and communication of scientific data.
	5. Use and development of specific laboratory equipments.
Transversal	
competencies	6. Efficient use of scientific information resources for professional formation in
	English.
	7. Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

7. Course objectives

7. Course objectives	
7.1. General objective	Introduction and development of nanostructures by physical and chemical
	methods for electronic and optoelectronic applications.
7.2. Specific objectives	Studies of thermodynamically phenomena and processes of development
	of thin films
	Study of dc/rf magnetron sputtering
	Study of thermal evaporation
	Study of pulsed laser deposition
	Study of electrochemical deposition
	Highlighting of essential problems in understanding of specific
	phenomena, in order to stimulate creative and critical thinking.

8.1. Lecture [chapters]	Teaching techniques	Observations
Nanomaterials: relevant length scales. Specific	Systematic exposition -	
physical properties.	lecture. Examples.	2 hours
Crystal growth models. Thermodynamic and kinetics	Systematic exposition -	
of crystal growth.	lecture. Examples.	2 hours
Fabrication techniques. Physical principles.	Systematic exposition -	
 dc and rf magnetron sputtering thermal evaporation pulsed laser deposition electrochemical deposition spin-coating 	lecture. Examples.	4 hours
Self-assembled materials at nanoscale	Systematic exposition -	
	lecture. Examples.	2 hours
Applications to electronics and optoelectronics	Systematic exposition -	
	lecture. Examples.	4 hours
Applications to photovoltaic devices	Systematic exposition -	2 hours

	lecture. Examples.	
Types of nanostructures	Systematic exposition -	
	lecture. Examples.	2 hours
Top-down fabrication techniques. Lithography.	Systematic exposition -	
	lecture. Examples.	2 hours
Bottom-up fabrication techniques; self-assembling at	Systematic exposition -	
nanoscale	lecture. Examples.	2 hours
Production of metallic and semiconductor nanowires	Systematic exposition -	
by template based methods	lecture. Examples.	2 hours
Nanowires and nanotubes. Applications.	Systematic exposition -	
	lecture. Examples.	4 hours

References:

- 1. T. Ohji, A. Wereszczak (Eds.), Nanostructured materials and Nanotechnology (Wiley, New York, 2009).
- 2. C. Dups, P. Houdy, and M. Lahmani, Nanoscience. Nanotechnologies and Nanophysics (Springer Verlag, Berlin, 2004).
- 3. M. Adachi, D.J. Lockwood (Eds.), Self-organized nanoscale materials (Springer Verlag, Berlin, 2006).
- 4. M. Kohler, W. Fritzsche, Nanotechnology. An Introduction to Nanostructuring Techniques (Wiley, New York, 2007).
- 5. Lecture notes available on http://solid.fizica.unibuc.ro

techniquesded practical work2 hoded practical work2 ho	vations ours ours ours
techniquesObserveded practical work2 hoded practical work2 hoded practical work2 hoded practical work2 ho	ours ours ours
ded practical work 2 ho ded practical work 2 ho	ours
ded practical work 2 ho	ours
ded practical work	
ded practical work 2 h	
	ours
ded practical work 2 ho	ours
ded practical work 2 ho	ours
	ours
ching and learning techniques Observ	vations
•	ded practical work 2 ho ded practical work 2 ho Group project 2 ho ching and learning Observing

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic **communities, professional associations and employers** (in the field of the study program) This course unit develops some theoretical and practical competencies and skills corresponding to national

and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark			
10.4. Lecture	 Explicitness, coherence and concision of scientific statements; Correct use of physical models and of specific mathematical methods; Ability to analyze specific examples; 	Written exam	70%			
10.5.1. Tutorials						
10.5.2. Practicals	 Knowledge and correct use of specific experimental techniques Data processing and analysis; 	Colloquium	30%			
10.5.3. Project [if applicable]						
10.6. Minimal requirements for passing the exam						
Requirements for mark 5 (10 points scale)						
Correct solving of subjects indicated as required for obtaining mark 5.						

Date

25.05.2024

Teacher(s) name and signature

Conf. dr. Sorina Iftimie

Practicals/Tutorials instructor(s) name(s) and signature(s) Conf. dr. Sorina Iftimie

Date of approval 10.06.2024

Head of department, Assoc. Prof. dr. Adrian Radu

DI.201 Nanostructures for electronics and optoelectronics

1. Study program

i study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title Nanostructur				res for electron	ics an	d optoelectro	onics		
2.2. Teacher			Prof. Ph.D. Eng. Vlad-Andrei ANTOHE						
2.3. Tutorials ins	structor(5)							
2.4. Practicals instructor(s)		Prof. Ph.D. Eng. Vlad-Andrei ANTOHE							
			Assist. Prof. Ph	n.D. So	orina IFTIMI	E			
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DS
study	2	Semester	1	evalı	uation	Е	of course	Type ²⁾	DI
							unit		

¹⁾ deepening (DA), specialty/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution:	2	Tutorials/Practicals	0/2	
3.2. Total hours per semester	56	lecture distribution: lecture	28	Tutorials/Practicals	0/28	
Distribution of estimated time for study						
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						
3.2.2. Research in library, study of electronic resources, field research					30	
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					10	
3.2.4. Examination					24	
3.2.5. Other activities					0	
3.3. Total hours of individual study	94					

3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

_ `			
4.1. curriculum	Introduction in Nanotechnology, Preparation and characterization methods at		
	nanoscale, Solid State Physics, Materials Science, Optics, Electricity, Electronics		
4.2. competences	4. Skills in handling small-scale lab equipment and basic research tools to perform		
	complex scientific experiments		
	5. Using of software tools for data analysis and processing		

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, video-projector, internet connection)
5.2. for tutorials/practicals	MDEO research infrastructure and Nanotechnology lab.

6. Acquired specific competencies

of Alequited Speen	
Professional	1. Understanding of physico-chemical processes involved in the fabrication of
competencies	nanostructures and nanomaterials
	2. Knowledge of using modern micro- and nanotechnology to design various types of nanostructured devices
	3. Skills in handling electrochemical equipment for the preparation of quasi-1D
	nanostructures (i.e. nanowires, nanotubes, nanorods, etc.)
	4. Abilities in experimental data analysis and interpretation in order to formulate
	relevant and rigorous conclusions
	5. Competences of employing advanced characterization tools of nanomaterials and
	of specific nanostructured opto-/electronic devices
Transversal	6. Efficient use of the available scientific information resources (specialized books,
competencies	research papers, internet search)
_	7. Responsible implementation of professional tasks while carefully taking into
	account the ethics and deontology
	8. Ability to communicate in English the scientific results to a broad audience in a
	rigorous and clearly structured manner
	account the ethics and deontology8. Ability to communicate in English the scientific results to a broad audience in a

7. Course objectives

7. Course objectives		
7.1. General objective	Development and characterization of novel nanostructured materials, to	
-	be used as active functional building blocks within modern electronic and	
	optoelectronic devices	
7.2. Specific objectives	Preparation methods of nanostructures and nanomaterials	
	Advanced characterization of functional nanostructures	
	Construction of sensors and biosensors based on nanostructured materials	
	Fabrication of photovoltaic structures based on nanostructured materials	

8.1. Lecture [chapters]	Teaching techniques	Observations
 Introduction in nanoscale science and technology Nanostructures. Types and classification Nanometer-scale effects Cleanrooms. Construction and classes 	Systematic exposition - Lecture. Examples.	4 hours
 Nanoporous templates in nanotechnology General considerations Supported alumina templates Template-assisted electrochemical synthesis 	Systematic exposition - Lecture. Examples.	4 hours
Lithography patterning approaches General considerations Optical lithography Electron-beam lithography 	Systematic exposition - Lecture. Examples.	4 hours
 Nanostructures growth and spatial nanolocalization Top down and bottom-up approaches Localization with single-nanowire resolution Types of nanostructured devices 	Systematic exposition - Lecture. Examples.	4 hours
Introduction in nanostructured sensing and biosensing Sensors and biosensors. Generalities 	Systematic exposition - Lecture. Examples.	6 hours

Nanostructured capacitive sensors		
 Nanostructured chemiresistive sensors 		
Introduction in Photovoltaics Solar cells. General considerations 	Systematic exposition - Lecture. Examples.	6 hours
 Main performance quantifiers Solar cells based on A²-B⁶ heterojunctions 		
 References: 1. V. A. Antohe, "Capacitive Sensors Based on Device Integration Routes", Lambert Academic 2. M. Di Ventra, S. Evoy, J. R. Heflin Jr., Kluw Technology", Academic Publishers 2004, ISBN 3. B. Bhushan, "Springer Handbook of Nanoteo 4. V. A. Antohe, Lecture notes 	Publishing (LAP), 2013, ISBN: 97 ver, "Introduction to Nanoscale Scie I: 1-402-07757-2	78-3-659-38899-6 ence and
8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
Anodic oxidation of thin aluminum films.	Exposition. Guided practical work	4 hours
Electrochemical deposition within supported nanoporous alumina templates	Exposition. Guided practical work	4 hours
Synthesis of electro-conductive polymers for sensing and biosensing	Exposition. Guided practical work	4 hours
Nanowires and nanotubes. Scanning electron microscopy (SEM)	Exposition. Guided practical work	4 hours
Electron-beam lithography (EBL)	Exposition. Guided practical work	4 hours
Topography of thin films. Atomic force microscopy (AFM)	Exposition. Guided practical work	4 hours
Nanolithography with an atomic force microscope (AFM)	Exposition. Guided practical work	4 hours
 Bibliography: S. Antohe, L. Ion, F. Stanculescu, S. Iftimie materialelor semiconductoare – Lucrari pract pages, 2016, ISBN: 978-973-558-940-0 S. Matéfi-Tempfli, M. Matéfi-Tempfli, A. V nanostructures fabrication using template m electrochemical synthesis with lithographic tech (2009), doi: 10.1007/s10854-008-9568-6 8.4. Research project [if applicable] 	ice", Ars Docendi, Universitatea 'lad, V. A. Antohe and L. Pirau ethods: a step forward to real	din Bucuresti, 16 x, "Nanowires an devices combinin
Presentation of a scientific paper	techniques Exposition. Individual work	4 hours
Bibliography:		- 110u13

Bibliography:

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics, as well as

of nanoscale science and technology. The contents and teaching methods were selected after a thorough analysis of similar course units within universities from Romania and European Union (Hannover University – Germany and Catholique University of Louvain – Belgium). The entire content of this lecture is thoroughly in line with the requirements of the main employers from industry, research institutes, universities or high-schools.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark		
10.4. Lecture	- Explicitness, coherence and concision of scientific statements	Written and oral exam	25%		
10.5.1. Tutorials					
10.5.2. Practicals	 Knowledge and correct use of specific experimental techniques Ability to use various top-down and bottom-up methods to design nanostructured devices 	Colloquium	50%		
10.5.3. Project [if applicable]	 Presentation of a scientific paper Quality of the presentation Ability to communicate the scientific results in a clear and structured manner Ability to address the questions and comments arising during and after the presentation 	Oral presentation with Q&A session	25%		
10.6. Minimal requirements for passing the exam					
Finalizing the work associa	(10 points scale) s session and presenting a scientific pa ted with the practical sessions and ob nal exam topics for a minimal mark of	taining a mark of 5 at the colloq	uium.		

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
20.05.2024	Prof. Ph.D. Eng. Vlad-Andrei ANTOHE	Prof. Ph.D. Eng. Vlad-Andrei ANTOHE

Date of approval 10.06.2024

Head of department, Conf. univ. dr. Adrian Radu

DI.202 Research activity

1. Study program

University of Bucharest
Faculty of Physics
Electricity, Solid State Physics and Biophysics
Physics
Graduate/Master
Physics of advanced materials and nanostructures (in
English)
Full-time study

2. Course unit

2.1. Course title]	Research activity						
2.2. Teacher									
2.3. Tutorials ins	structor(s	5)							
2.4. Practicals in	structor((s)		-	Prof. dr. Vlad-	Andrei	Antohe, Cor	nf. dr. Sorina Iftimie	ć
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DA
study	2	Semester	3	evalı	uation	E	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	6	distribution: lecture	0	Tutorials/Practicals	0/6
3.2. Total hours per semester	84	distribution: lecture	0	Tutorials/Practicals	0/84
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography			0		
3.2.2. Research in library, study of elec	tronic	resources, field resea	arch		30
3.2.3. Preparation for practicals/tutorial	s/proj	ects/reports/homewo	rks		30
3.2.4. Examination			6		
3.2.5. Other activities					
2.2. Total hours of individual study					

3.3. Total hours of individual study	66
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State
	Physics, Electrodynamics, Thermodynamics and statistical physics
4.2. competences	Using of specialized software for scientific data analysis

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	Research infrastructure (în research centers) for preparation and

characterization of materials and nanostructures
--

6. Acquired specific competencies

Professional	1. Creative use of acquired knowledge for preparation and characterization of
competencies	materials and nanostructures
	2. Solving physics problems in given conditions
	3. Analysis and communication of scientific data, communication for physics
	popularisation.
	4. Use of professional software
Transversal	
competencies	5. Efficient use of scientific information and communication resources for
-	professional formation in English.
	6. Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

7. Course objectives

, course objectives	
7.1. General objective	Knowledge and use of experimental or theoretical methods used în
	fabrication and/or characterization of materials and nanostructures
7.2. Specific objectives	Highlighting of specific problems designed to understand the specific
	phenomena and to stimulate the creative and critical thinking for solving
	practical issues.

o. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations
	Systematic exposition -	
	lecture. Examples.	
References:	-	
6.		
8.2. Tutorials [main tutorial subjects]	Teaching and learning	Observetiens
	techniques	Observations
	Exposition. Guided work	
Bibliography:		
6.		
0.2 Dur stiesle [usessuch subjects projects]	Teaching and learning	Observations
8.3. Practicals [research subjects, projects]	techniques	Observations
	Guided practical work	
Bibliografie:		•
1.		
8.4. Research project [if applicable]	Teaching and learning	Observations
	techniques	Observations
Experimental methods used in fabrication and/or	Guided practical work	- specific types of
characterization of materials and nanostructures	-	activities, defined
		by the research
		theme chosen by

		student
Theoretical models for description of physical properties/physical phenomena related to materials and nanostructures	Guided practical work	- specific types of activities, defined by the research theme chosen by student
Bibliography:		

- to be indicated by the coordinator of the research activity

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this discipline unit is related to research themes proposed to students and is designed such that the student develops abilities of investigating the physical properties of materials and nanostructures, domains of interest for research institutes and companies with activities in Condensed Matter Physics, especially Nanotehnologies, as well as in education.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark	
10.4. Lecture				
10.5.1. Tutorials				
10.5.2. Practicals				
10.5.3. Project [if applicable]	 Clarity, coherence and concision of exposition; Correct use of physical models and of specific mathematical methods; Knowledge of experimental techniques Ability to analyse scientific data 	Research report	100%	
10.6. Minimal requirements for passing the exam				

Requirements for mark 5 (10 points scale)

Final mark reflects the assessment of the coordinator of the research activity and is related to the knowledge level of experimental/theoretical models used and to the correct interpretation of scientific data.

Date

Teacher's name and signature

25.05.2024

Practicals/Tutorials instructor(s) name(s) and signature(s)

Prof. dr. Vlad-Andrei ANTOHE Conf. dr. Sorina IFTIMIE

Date of approval 10.06.2024

Head of department, Conf. dr. Adrian RADU

DI.209 Physics of liquid crystals and polymeric materials

1. Study program

i Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title Physics of lie				quid crystals an	d poly	ymeric mate	rials. Applicati	ons.	
2.2. Teacher			Prof. dr. Valent	tin Ba	rna				
2.3. Tutorials ins	structor(s	5)							
2.4. Practicals in	structor((s)			Prof. dr. Valent	tin Ba	rna		
2.5. Year of		2.6.	2.6. 2.7.		Гуре of		2.8. Type	Content ¹⁾	DA
study	2	Semester	4 evaluation		lation	E	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	0/2
3.2. Total hours per semester	40	distribution: lecture	20	Tutorials/Practicals	0/20
Distribution of estimated time for study	7				hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography		bibliography	30		
3.2.2. Research in library, study of elec	tronic	resources, field resea	arch		20
3.2.3. Preparation for practicals/tutorial	s/proj	ects/reports/homewor	rks		20
3.2.4. Examination		-			15
3.2.5. Other activities					
3.3. Total hours of individual study	o-				•

S.S. Total hours of mulvidual study	85
3.4. Total hours per semester	125
3.5. ECTS	5

4. Prerequisites (if necessary)

4.1. curriculum	Numerical methods, Molecular physics and heat, Thermodynamics and Statistical Physics
	Physics
4.2. competences	1. Knowledge and understanding of physical properties of liquid crystals
	2. Knowledge and understanding of physical properties of polymeric materials
	3. Knowledge and understanding of the physical processes and phenomena typical
	for liquid crystals and polymeric materials based devices
	4. Understanding underlying physical phenomena

5.	Ability to analyze and understand relevant experimental data and to formulate
	rigorous conclusions

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, video-projector, internet connection)	
5.2. for tutorials/practical	Experimental set-ups in Thin Films Laboratory and Nanotechnology	
classes	Laboratory of Materials and Devices for Electronics and	
	Optoelectronics R&D Center	

6. Acquired specific competencies

0. Acquireu specif	ic competencies
Professional	1. Knowledge and explanation of the physical properties of liquid crystals and
competencies	polymeric materials
_	2. Knowledge and explanation of the physical properties of liquid crystals and
	polymeric materials based devices
	3. Development of specific capacities of analysis using fundamental processes and
	phenomena in physics
	4. Development of the ability to create and properly use of mathematical and
	numerical models applied to liquid crystals and polymeric materials and their
	applications
	5. Analysis and communication of scientific data.
	6. Use and development of specific laboratory equipments.
Transversal	
competencies	7. Efficient use of scientific information resources for professional formation in
-	English.
	8. Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

7. Course objectives

7.1. General objective	Knowledge and understanding of the physical properties of liquid crystals
	and polymeric materials and their applications
7.2. Specific objectives	Liquid crystals: physical properties, chemical properties, chemical
	structure, growth methods
	Nematic liquid crystals: phase transitions
	Continuum theory applied to liquid crystals
	Liquid crystals displays: physical properties, chemical properties, growth
	methods
	Liquid crustal-impurities compounds
	Polymer liquid crystals: physical properties, chemical properties, growth
	methods
	Structure-properties relation for polymer liquid crystals
	Supramolecular polymers
	Liquid crystals and polymer liquid crystals based devices

8.1. Lecture [chapters]	Teaching techniques	Observations
Physics of liquid crystals – classification, physical and chemical properties, aggregation states	Systematic exposition - lecture.	2 hours
Nematic liquid crystals: phase transitions, density functional theory, nematic liquid crystals – isotropic materials interface	· ·	4 hours

Continuum theory applied to liquid crystals: Freank- Oseen free energy, physical phenomena at surface,	Systematic exposition - lecture. Examples.	
Fredericks effect for various configurations.	_	4 hours
Liquid crystals displays: definition, classification, physical properties	Systematic exposition - lecture. Examples.	2 hours
Liquid crustal-impurities compounds	Systematic exposition - lecture. Examples.	2 hours
Polymer liquid crystals: classification, physical and chemical properties, growth methods	Systematic exposition - lecture. Examples.	2 hours
Structure-properties relation for polymer liquid crystals: geometric stereoisomers, optical stereoisomers, stereoisomerism to polymers	Systematic exposition - lecture. Examples.	
		2 hours
Supramolecular polymers: physical properties, chemical properties	Systematic exposition - lecture. Examples.	
		4 hours
Liquid crystals and polymer liquid crystals based devices	Systematic exposition - lecture. Examples.	4 hours
Resume of lectures.	Systematic exposition - lecture. Examples.	2 hours
 References: L. Georgescu, V. Popa-Niţă, E. Barna, C. Be Bucureşti, 2002 P.G. de Gennes, J. Prost, <i>The physics of liquid cu</i> S. Chandrasekhar, <i>Liquid crystals</i>, Cambridge U C. Moţoc, G. Iacobescu, <i>Cristale lichide – pr</i> Craiova, 2004 L. Constantinescu, C. Berlic, <i>Structura polin</i> Bucureşti, 2003 	rystals, Oxford University Press, 1 iniversity Press, 1994 roprietăți fizice și aplicații, Editu nerilor. Metode de studiu, Editu	1993 ura Universității din
8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
Building of liquid crystal cell with various configurations and by different methods	Guided practical work	4 hours
Aligned nematic liquid crystal cell	Guided practical work	2 hours
Truisted nometic liquid envetal coll	Cuided practical work) hours

	Guided practical work	4 hours
configurations and by different methods	Guidea practical work	- nours
Aligned nematic liquid crystal cell	Guided practical work	2 hours
Twisted nematic liquid crystal cell	Guided practical work	2 hours
Electro-optical characterization of a liquid crystal cell	Guided practical work	2 hours
and polymeric thin film	Guided plactical work	
Liquid crystal cell: molecular alignment at surface.	Guided practical work	2 hours
Homeotropic alignment. Planar alignment	Guided plactical work	
Polymerization process by cold plasmas. Atomic force		4 hours
microscopy analysis and optical microscopy	Guided practical work	
investigations of obtained polymeric film. Evaluation of	Guided plactical work	
specific parameters		
Liquid crystals displays: electro-optical characterization	Guided practical work	4 hours

Guided practical work	2 hours
Guided practical work	4 hours
Group project	2 hours
Teaching and learning techniques	Observations
-	Guided practical work Group project Teaching and learning

References:

- L. Georgescu, L. Constantinescu, E. Barna, C. Miron, C. Berlic, *Introducere în fizica polimerilor*, Editura Credis, București, România, 2004
- Shri Singh, Liquid crystals. Fundamentals, Editura World Scientific, 2002
- L.M. Constantinescu, C. Berlic, V. Barna, *Fizico-chimia polimerilor*. *Aplicații*, Editura Universității din București, 2006

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

10. Assessment

IV. Assessment			
Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	 Explicitness, coherence and concision of scientific statements; Correct use of physical models and of specific mathematical methods; Ability to analyze specific examples; 	Written exam	70%
10.5.1. Tutorials			
10.5.2. Practicals	 Knowledge and correct use of specific experimental techniques Data processing and analysis; 	Colloquium	30%
10.5.3. Project [if applicable]			
10.6. Minimal requirement	nts for passing the exam		
Requirements for mark 5	(10 points scale)		
Correct solving of subjects	indicated as required for obtaining m	ark 5.	

Date

Teacher(s) name and signature

Practicals/Tutorials instructor(s) name(s) and signature(s)

Prof. dr. Valentin Barna

Prof. dr. Valentin Barna

Date of approval 10.06.2024

Head of department, Conf. dr. Adrian RADU

DI.210 Research activity

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title		I	Resea	rch ac	tivity				
2.2. Teacher									
2.3. Tutorials ins	structor(s	5)							
2.4. Practicals in	structor((s)		_	Prof. dr. Vlad-	Andrei	i Antohe, Cor	nf. dr. Sorina Iftimie	2
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DA
study	2	Semester	4	evalı	uation	E	of course unit	Type ²⁾	DI

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	18	distribution: lecture	0	Tutorials/Practicals	0/18
3.2. Total hours per semester	180	distribution: lecture	0	Tutorials/Practicals	0/180
Distribution of estimated time for stud	y				hours
3.2.1. Learning by using one's own co	urse no	otes, manuals, lecture	notes,	bibliography	0
3.2.2. Research in library, study of ele	ctronic	resources, field resea	arch		20
3.2.3. Preparation for practicals/tutoria	ls/proj	ects/reports/homewor	rks		140
3.2.4. Examination		-			5
3.2.5. Other activities					
3.3. Total hours of individual study					

3.3. Total hours of individual study	165	
3.4. Total hours per semester	345	
3.5. ECTS	15	

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State
	Physics, Electrodynamics, Thermodynamics and statistical physics
4.2. competences	Using of specialized software for scientific data analysis

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for tutorials/practicals	Research infrastructure (în research centers) for preparation and

characterization of materials and nanostructures
--

6. Acquired specific competencies

Professional	9. Creative use of acquired knowledge for preparation and characterization of
competencies	materials and nanostructures
	10. Solving physics problems in given conditions
	11. Analysis and communication of scientific data, communication for physics
	popularisation.
	12. Use of professional software
Transversal	
competencies	13. Efficient use of scientific information and communication resources for
competencies	professional formation in English.
	14. Efficient and responsible implementation of professional tasks, with observance of
	· · ·
	the laws, ethics and deontology.

7. Course objectives

i course objectives	
7.1. General objective	Knowledge and use of experimental or theoretical methods used în
	fabrication and/or characterization of materials and nanostructures
7.2. Specific objectives	Highlighting of specific problems designed to understand the specific
	phenomena and to stimulate the creative and critical thinking for solving
	practical issues.

o. Contents			
8.1. Lecture [chapters]	Teaching techniques	Observations	
	Systematic exposition -		
	lecture. Examples.		
References:			
6.			
8.2. Tutorials [main tutorial subjects]	Teaching and learning	Observations	
	techniques	Observations	
	Exposition. Guided work		
Bibliography:	•		
6.			
9.2 Dractical a [research subjects projects]	Teaching and learning	Observations	
8.3. Practicals [research subjects, projects]	techniques	Observations	
	Guided practical work		
Bibliografie:	·	•	
1.			
8.4. Research project [if applicable]	Teaching and learning	Observations	
	techniques	Observations	
Experimental methods used in fabrication and/or	Guided practical work	- specific types of	
characterization of materials and nanostructures		activities, defined	
		by the research	
		theme chosen by	

		student
Theoretical models for description of physical properties/physical phenomena related to materials and nanostructures	Guided practical work	- specific types of activities, defined by the research theme chosen by student
Bibliography:		Stutin

- to be indicated by the coordinator of the research activity

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this discipline unit is related to research themes proposed to students and is designed such that the student develops abilities of investigating the physical properties of materials and nanostructures, domains of interest for research institutes and companies with activities in Condensed Matter Physics, especially Nanotehnologies, as well as in education.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture			
10.5.1. Tutorials			
10.5.2. Practicals			
10.5.3. Project [if applicable]	 Clarity, coherence and concision of exposition; Correct use of physical models and of specific mathematical methods; Knowledge of experimental techniques Ability to analyse scientific data 	Research report	100%
10.6. Minimal require	nents for passing the exam		
Requirements for mar	k 5 (10 points scale)		

Requirements for mark 5 (10 points scale)

Final mark reflects the assessment of the coordinator of the research activity and is related to the knowledge level of experimental/theoretical models used and to the correct interpretation of scientific data.

Date

Teacher's name and signature

25.05.2024

Practicals/Tutorials instructor(s) name(s) and signature(s)

Prof. dr. Vlad-Andrei Antohe Conf. dr. Sorina Iftimie

Date of approval 10.06.2024

Head of department, Conf. dr. Adrian Radu

DI.211 Finalization of master thesis

1. Study program

i study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title Research acti			tivity						
2.2. Teacher									
2.3. Tutorials ins	structor(s	5)							
2.4. Practicals instructor(s)			Prof. dr. Vlad-A	Andrei	Antohe, Cor	nf. dr. Sorina Iftimie	ć		
2.5. Year of		2.6.			Type of		2.8. Туре	Content ¹⁾	DA
study	2	Semester	4	evalı	lation	E	of course	Type ²⁾	DI
							unit	- 5 F -	

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum		distribution: lecture	0	Tutorials/Practicals	0/0
3.2. Total hours per semester		distribution: lecture	0	Tutorials/Practicals	0/0
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own cou	irse no	otes, manuals, lecture	notes,	bibliography	30
3.2.2. Research in library, study of electronic resources, field research				60	
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks			20		
3.2.4. Examination			15		
3.2.5. Other activities					
3.3. Total hours of individual study	105				

	125
3.4. Total hours per semester	125
3.5. ECTS	5

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State
	Physics, Electrodynamics, Thermodynamics and statistical physics
4.2. competences	Using of specialized software for scientific data analysis

5. Conditions/Infrastructure (if necessary)

5.1. for lecture

5.2. for tutorials/practicals	Research infrastructure (în research centers) for preparation and
	characterization of materials and nanostructures

6. Acquired specific competencies

Γ

of required speen	
Professional	1. Creative use of acquired knowledge for preparation and characterization of
competencies	materials and nanostructures
-	2. Solving physics problems in given conditions
	3. Analysis and communication of scientific data, communication for physics
	popularisation.
	4. Use of professional software
Transversal	
competencies	5. Efficient use of scientific information and communication resources for
1	professional formation in English.
	6. Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

7. Course objectives

i course objectives	
7.1. General objective	Knowledge and use of experimental or theoretical methods used în
-	fabrication and/or characterization of materials and nanostructures
7.2. Specific objectives	Highlighting of specific problems designed to understand the specific
	phenomena and to stimulate the creative and critical thinking for solving
	practical issues.

o. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations
	Systematic exposition -	
	lecture. Examples.	
References:		
7.		
8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
	Exposition. Guided work	
Bibliography:		
7.		
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
	Guided practical work	
Bibliografie: 1.		
8.4. Research project [if applicable]	Teaching and learning techniques	Observations
Experimental methods used in fabrication and/or characterization of materials and nanostructures	Guided practical work	- specific types of activities, defined by the research

		theme chosen by student
Theoretical models for description of physical properties/physical phenomena related to materials and nanostructures	Guided practical work	- specific types of activities, defined by the research theme chosen by student
Bibliography:		

- to be indicated by the coordinator of the research activity

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this discipline unit is related to research themes proposed to students and is designed such that the student develops abilities of investigating the physical properties of materials and nanostructures, domains of interest for research institutes and companies with activities in Condensed Matter Physics, especially Nanotehnologies, as well as in education.

10. Assessment

		-				
Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark			
10.4. Lecture						
10.5.1. Tutorials						
10.5.2. Practicals						
10.5.2. Practicals 10.5.3. Project [if applicable] - Clarity, coherence and concision of exposition; - Correct use of physical models and of specific mathematical methods; - Knowledge of experimental techniques - Ability to analyse scientific data		Report on master thesis	100%			
10.6. Minimal requirements for passing the exam						
1						

Requirements for mark 5 (10 points scale)

Final mark reflects the assessment of the coordinator of the research activity and is related to the knowledge level of experimental/theoretical models used and to the correct interpretation of scientific data.

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2024		Prof. dr. Vlad-Andrei Antohe Conf. dr. Sorina Iftimie

Date of approval 10.06.2024

Head of department, Conf. dr. Adrian Radu

II. Elective course units

DO.111.1 Physics of mesoscopic systems

1. Study program

<u> </u>	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title Physics of			s of m	esoscopic system	ms				
2.2. Teacher				Prof. dr. Lucia	n Ion				
2.3. Tutorials instructor(s)				Prof. dr. Lucia	n Ion				
2.4. Practicals in	structor((s)							
2.5. Year of		2.6.		2.7.	Type of		2.8. Type	Content ¹⁾	DS
study	1	Semester	2	evalı	uation	E	of course unit	Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester		distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study				hours	
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography			bibliography	30	
3.2.2. Research in library, study of elect	3.2.2. Research in library, study of electronic resources, field research				30
3.2.3. Preparation for practicals/tutorials	3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks			35	
3.2.4. Examination				24	
3.2.5. Other activities					
3.3. Total hours of individual study	119				•

3.4. Total hours per semester	175	
3.5. ECTS	7	

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State Physics
4.2. competences	Using of software tools for data analysis/processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	-

6. Acquired specific competencies

I	
Professional	1. Identificartion and adequate use of physics laws in a given context; identification
competencies	and adequate use of notions and specific physics laws for mesoscopic systems.
	2. Solving physics problems in given conditions.
	3. Creative use of acquired physical knowledge to understand and to construct
	models for physical processes and properties of mesoscopic
	systems/nanostructures.
	4. Analysis and communication of scientific data, communication for physics
	popularisation.
	5. Use and development of specific software tools.
Transversal	
competencies	6. Efficient use of scientific information resources and of communication and of
r	resources for professional formation in English.
	7. Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

7. Course objectives

7.1. General objective	Introduction and analysis of the physical properties of mesoscopic
	systems
7.2. Specific objectives	Study of electronic structure, transport and optical properties of
	mesoscopic systems.
	Analysis of specific charge transport models.
	Highlighting of essential problems in understanding of specific
	phenomena, in order to stimulate creative and critical thinking în solving
	problems.

o. Contents	1	
8.1. Lecture [chapters]	Teaching techniques	Observations
Introduction: description of mesoscopic systems. Growth and processing methods. Length scales.	Systematic exposition - lecture. Examples.	4 hours
Electronic structure of mesoscopic systems. Envelope wavefunction method.	Systematic exposition - lecture. Examples.	4 hours
Anderson localization. Scaling theory of localization. Reduced dimensionality. Case $d \le 2$. Case $d > 2$. Metal-insulator transition	Systematic exposition - lecture. Examples.	6 hours
Quantum interference effects în charge transport. Landauer-Büttiker formalism. Applications.	Systematic exposition - lecture. Examples.	4 hours

Charge transport în magnetic fields. Shubnikov – de	Systematic exposition -	4 hours
Haas oscillations. Integer quantum Hall effect.	lecture. Examples.	
Aharonov-Bohm effect. Berry phase.	Systematic exposition -	4 hours
	lecture. Examples.	
Coulomb blockade în semiconductor nanostructures	Systematic exposition -	2 hours
	lecture. Examples.	

References:

- **8.** D.K. Ferry, S.M. Goodnick, *Transport in nanostructures* (Cambridge University Press, Cambridge, UK, 1997).
- 9. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
- **10.** H. Bouchiat, Y. Gefen, S. Gueron, G. Montambaux, J. Dalibard (Eds.), *Nanophysics: Coherence and Transport* (Elsevier, Amsterdam, Netherland, 2005).
- 11. V.F. Gantmakher, *Electrons and disorder în solids* (Clarendon Press, Oxford, UK, 2005)
- **12.** L. Ion, *Lecture notes*

8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
Electronic states în mesoscopic systems. Envelope	Exposition. Guided work	4 hours
wavefunction method. Aplications.		
Effect of disorder in 1D and 2D electronic systems.	Exposition. Guided work	4 hours
Electronic states in 2D electron systems in magnetic	Exposition. Guided work	4 hours
fields. Disorder effects.		
Charge transport în mesoscopic structures. R-matrix	Exposition. Guided work	4 hours
formalism.		
Charge transport in quantum wires. <i>Ab initio</i> models.	Exposition. Guided work	4 hours
Weak localization regime.	Exposition. Guided work	4 hours
Electron-phonon interaction în low-dimensional	Exposition. Guided work	4 hours
systems. Peierls transition.	_	

Bibliography:

- L. Mihaly, M.C. Martin, Solid State Physics Problems and solutions (Wiley, New York, USA, 1996)
- S. Datta, *Electronic Transport în Mesoscopic Systems* (Cambridge University Press, Cambridge, UK, 1997).
- Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, Oxford, UK, 1997)

8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
	Guided practical work	4 ore
8.4. Research project [if applicable]	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and

technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

10. Assessment

			10.3.	
Activity type	10.1. Assessment criteria	10.2. Assessment methods	Weight în	
fictivity type	10.1. Assessment criteria	10.2. Assessment methods	final mark	
10.4. Lecture	 Explicitness, coherence and concision of scientific statements; Correct use of physical models and of specific mathematical methods; Ability to analyse specific 	Written and oral exam	50%	
	examples;		500/	
10.5.1. Tutorials	- Use of specific physical and mathematical methods and techniques;	Homework, research projects	50%	
10.5.2. Practicals	 Knowledge and correct use of specific experimental techniques Data processing and analysis; 			
10.5.3. Project [if applicable]				
* *	ments for passing the exam			
Requirements for mar	k 5 (10 points scale)			
	ects indicated as required for obtaining m	ark 5		
Requirements for mar		arn 5.		
-	K 10 (10 points scarc)	1.40		

Correct solving of subjects indicated as required for obtaining mark 10.

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2024	Prof. dr. Lucian Ion	
		Prof. dr. Lucian Ion
Date of approval	Head of	f department,
10.06.2024	Conf. dr.	Adrian Radu

DO.111.2 Transport phenomena in disordered materials

1. Study program

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title		Г	Transport phenomena in disordered materials						
2.2. Teacher			Prof. dr. Lucia	n Ion					
2.3. Tutorials instructor(s)				Prof. dr. Lucia	n Ion				
2.4. Practicals in	structor((s)			Prof. dr. Lucia	n Ion			
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DS
study	1	Semester	2 evaluation		uation	E	of course unit	Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study	7	·			hours
3.2.1. Learning by using one's own course note		otes, manuals, lecture	notes,	bibliography	30
3.2.2. Research in library, study of elec	tronic	resources, field resea	arch		30
3.2.3. Preparation for practicals/tutorial	s/proj	ects/reports/homewo	rks		35
3.2.4. Examination					24
3.2.5. Other activities					
3.3 Total hours of individual study					

3.3. Total hours of individual study	119	
3.4. Total hours per semester	175	
3.5. ECTS	7	

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State Physics			
4.2. competences	8. Using of software tools for data analysis/processing			

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	Research infrastructure în MDEO research center

6. Acquired specific competencies

Professional	1. Knowledge of transport phenomena în disordered electron systems
competencies	2. Solving physics problems in given conditions.
	3. Creative use of acquired physical knowledge to understand and to construct
	models for physical processes in disordered electron systems.
	4. Analysis and communication of scientific data, communication for physics
	popularisation.
	5. Use and development of specific software tools.
Transversal	
competencies	6. Efficient use of scientific information resources and of communication and of
	resources for professional formation in English.
	7. Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

7. Course objectives

Analysis of charge transport în disordered electron systems
Study of electronic structure în disordered materials.
Analysis charge transport models în disordered materials.
Highlighting of essential problems in understanding of specific
phenomena, in order to stimulate creative and critical thinking în solving
problems.

8. Contents

o. Contents	·	
8.1. Lecture [chapters]	Teaching techniques	Observations
Localization of electronic states in solids : structure of isolated impurity states; Lifschitz model of localization; structure of impurity bands in lightly doped semiconductors; structure of impurity bands in heavily doped semiconductors.	Systematic exposition - lecture. Examples.	6 hours
Hopping transport mechanism : experimental facts; Miller-Abrahams model; percolation models; nearest- neighbours hopping transport mechanism; dependence on impurity density; activation energy; variable-range hopping mechanism (Mott).	Systematic exposition - lecture. Examples.	12 hours
Hopping in magnetic field : magnetorezistance, dependence on magnetic field; Hall effect	Systematic exposition - lecture. Examples.	8 hours
Super-ohmic effects	Systematic exposition - lecture. Examples.	2 hours
Deferences		

References:

13. B.I. Shklovskii, A.L.Efros, *Electronic properties of doped semiconductors* (Springer, Heidelberg, 1984).

14. N.F. Mott, E.A. Davis, Electron processes in non-crystalline materials (Clarendon Press, Oxford,

1979).

- **15.** S. Antohe, *Fizica semiconductorilor organici* (Editura Universității din București, București, 1997).
- **16.** V.F. Gantmakher, *Electrons and disorder în solids* (Clarendon Press, Oxford, UK, 2005).B.I. Shklovskii, A.L.Efros, *Electronic properties of doped semiconductors* (Springer, Heidelberg, 1984).
- **17.** N.F. Mott, E.A. Davis, *Electron processes in non-crystalline materials* (Clarendon Press, Oxford, 1979).
- 18. S. Antohe, Fizica semiconductorilor organici (Editura Universității din București, București, 1997).
- 19. V.F. Gantmakher, Electrons and disorder în solids (Clarendon Press, Oxford, UK, 2005).

8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
Electronic states în disordered systems. Applications.	Exposition. Guided work	6 hours
Percolation. Structure of critical cluster. Numerical	Exposition. Guided work	4 hours
methods – lattice models.		
Charge transport în polycrystaline/amorphous	Exposition. Guided work	4 hours
semiconductor films		
Hopping magnetoresistance.	Exposition. Guided work	4 hours
Metal/semiconductor contact phenomena	Exposition. Guided work	4 hours
Coulomb gap. Shklovskii-Efros model.	Exposition. Guided work	6 hours

Bibliography:

L. Mihaly, M.C. Martin, *Solid State Physics – Problems and solutions* (Wiley, New York, USA, 1996)
N.F. Mott, E.A. Davis, *Electron processes in non-crystalline materials* (Clarendon Press, Oxford, 1979).

8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
8.4. Research project [if applicable]	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	 Explicitness, coherence and concision of scientific statements; Correct use of physical models and of specific mathematical methods; Ability to analyse specific examples; 	Written and oral exam	50%
10.5.1. Tutorials	- Use of specific physical and	Homework	50%

	mathematical methods and techniques;							
10.5.2. Practicals	- Knowledge and correct use of	0						
	specific experimental techniques							
	- Data processing and analysis;							
10.5.3. Project [if								
applicable]								
10.6. Minimal requirements for passing the exam								
Requirements for mark 5 (10 points scale)								
All practicals have to be performed.								
Correct solving of subjects indicated as required for obtaining mark 5 (final exam and homeworks).								

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2024	Prof. dr. Lucian Ion	name(o) and orginatore(o)
		Prof. dr. Lucian Ion
Date of approval	Head of	f department,
10.06.2024	Conf. dr.	Adrian Radu

DO.111.3 Linear transport theory

1. Study program

University of Bucharest
Faculty of Physics
Electricity, Solid State Physics and Biophysics
Physics
Graduate/Master
Physics of advanced materials and nanostructures (in
English)
Full-time study

2. Course unit

2.1. Course title Linear trans				sport theory						
2.2. Teacher			Prof. dr. Lucian Ion							
2.3. Tutorials instructor(s)			Prof. dr. Lucia	n Ion						
2.4. Practicals in	structor((s)								
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DS	S
study	1	Semester	2 evalu		uation	E	of course unit	Type ²⁾	DC	0

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester		distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					
3.2.2. Research in library, study of electronic resources, field research					
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					
3.2.4. Examination					24
3.2.5. Other activities					
3.3 Total hours of individual study					

3.3. Total hours of individual study	119	
3.4. Total hours per semester	175	
3.5. ECTS	7	

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State Physics
4.2. competences	Using of software tools for data analysis/processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	Computing infrastructure în MDEO research center

6. Acquired specific competencies

Professional	1. Knowledge of linear transport theory (linear response functions, generalized
competencies	susceptibility, fluctuation-dissipation theorem)
	2. Solving physics problems in given conditions.
	3. Creative use of acquired physical knowledge to understand and to construct
	models for physical processes in disordered electron systems.
	4. Analysis and communication of scientific data, communication for physics
	popularisation.
	5. Use and development of specific software tools.
Transversal	
competencies	6. Efficient use of scientific information resources and of communication and of
1	resources for professional formation in English.
	7. Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

7. Course objectives

/ Course objectives	
7.1. General objective	Formulation of linear response theory
7.2. Specific objectives	Study of linear response function and generalized susceptibility.
	Application to physical phenomena
	Highlighting of essential problems in understanding of specific
	phenomena, in order to stimulate creative and critical thinking în solving
	problems.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations	
Introduction to non-equilibrium thermodynamics.	Systematic exposition -	1 hours	
Thermodynamic forces and fluxes.	lecture. Examples.	4 hours	
Linear response. Onsager's relations. Applications.	Systematic exposition -	4 hours	
	lecture. Examples.		
Quantum theory of linear response. Response function.	Systematic exposition -	6 hours	
Correlation functions. Generalized susceptibility.	lecture. Examples.		
Kramers-Krönig relations. Dissipation phenomena.	Systematic exposition -	4 hours	
Relaxation phenomena.	lecture. Examples.		
Fluctuation-dissipation theorem	Systematic exposition -	4 hours	
-	lecture. Examples.		
Quantum transport. Kubo formula. Kubo-Greenwood	Systematic exposition -	6 hours	
formula.	lecture. Examples.		
Deferences			

References:

1. R. Balescu, Equilibrium and nonequilibrium statistical mechanics (Wiley, New York, USA, 1975).

2. C. Jacoboni, *Theory of electron transport in semiconductors* (Springer, Berlin, 2010).

3. J. Rammer, Quantum transport theory (Perseus, Reading, USA, 1998).

4. L. Ion, Note de curs

8.2. Tutorials [main tutorial subjects] Teaching and learning Observations

	techniques	
Electric conductivity in disordered electron systems.	Exposition. Guided work	4 ore
Susceptibility of electron gas. Aproximations.	Exposition. Guided work	4 ore
Dynamic structure factor	Exposition. Guided work	4 ore
Aplications: dielectric relaxation; magnetic resonance	Exposition. Guided work	8 ore
Aplications: light scattering on density fluctuations	Exposition. Guided work	4 ore
Aplications: fluctuation-dissipation theorem	Exposition. Guided work	4 ore

Bibliography:

- J. Rammer, *Quantum transport theory* (Perseus, Reading, USA, 1998).
- L. Ion, Note de curs

8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
	Guided practical work	
8.4. Research project [if applicable]	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union. The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	 Explicitness, coherence and concision of scientific statements; Correct use of physical models and of specific mathematical methods; Ability to analyse specific examples; 	Written and oral exam	50%
10.5.1. Tutorials	- Use of specific physical and mathematical methods and techniques;	Homework	50%
10.5.2. Practicals			
10.5.3. Project [if			
applicable]			
10.6. Minimal require	ements for passing the exam		

Requirements for mark 5 (10 points scale)

Correct solving of subjects indicated as required for obtaining mark 5 (final exam and homeworks).

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2024	Prof. dr. Lucian Ion	Prof. dr. Lucian Ion
Date of approval 10.06.2024	Head of department, Conf. dr. Adrian Radu	

DO.203.1 Nonlinear Optics

1. Study program

1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title]	Nonlir	iear O	ptics				
2.2. Teacher			Prof. dr. Daniela Dragoman						
2.3. Tutorials instructor(s)			Prof. dr. Daniela Dragoman						
2.4. Practicals instructor(s)			Conf. Dr. Sorina Iftimie						
2.5. Year of		2.6.		2.7.	Type of		2.8. Type	Content ¹⁾	DS
study	2	Semester	1	evalı	lation	E	of course unit	Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	1.43/0. 57
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	20/8
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					20
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					25
3.2.4. Examination				19	
3.2.5. Other activities					
2.2. Total hours of individual study					

3.3. Total hours of individual study	94
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics
4.2. competences	Computational physics abilities
_	Using of software tools for data analysis/processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	Specifically equipped laboratory

6. Acquired specific competencies

Professional	1. Identification and adequate use of the specific laws and concepts of nonlinear
competencies	optics
_	2. Solving physics problems in given conditions
	3. Creative use of acquired knowledge for understanding and modelling of nonlinear
	processes and for designing optical systems and experimental set-ups for their
	observation
	4. Analysis and communication of scientific data, communication for physics
	popularisation.
	5. Use and development of specific software tools
Transversal	6. Efficient use of scientific information and communication resources for
competencies	
	7. Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.
	 processes and for designing optical systems and experimental set-ups for their observation 4. Analysis and communication of scientific data, communication for physics popularisation. 5. Use and development of specific software tools 6. Efficient use of scientific information and communication resources for professional formation in English. 7. Efficient and responsible implementation of professional tasks, with observance

7. Course objectives

i course objectives		
7.1. General objective	Introduction and analysis of the specific physical processes in nonlinear	
	optics and of the experimental conditions for their observation	
7.2. Specific objectives	Study of parametric nonlinear optical phenomena in media with	
	susceptibilities of the second and third order.	
	Correct use of the coupled mode formalism	
	Highlighting at each chapter the applications of the studied phenomena	
	and of the required experimental set-ups in order to stimulate the creative	
	and critical thinking for solving practical issues.	

o. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations
Introductive: Maxwell equations in dielectric media. Polarization mechanisms. Parametric nonlinear optical phenomena	Systematic exposition - lecture. Examples.	4 hours
Birefringent crystals. The refractive index ellipsoid. Light propagation in anisotropic media. Phase matching conditions	Systematic exposition - lecture. Examples.	4 hours
Second harmonic generation. The second order nonlinear polarization tensor	Systematic exposition - lecture. Examples.	2 hours
Coupled-mode formalism. Efficiency of second harmonic generation; designing an optical system for maximizing the efficiency	Systematic exposition - lecture. Examples.	3 hours
Coupled-mode formalism for three-wave mixing. Examples of sum- and difference-frequency generation, parametric oscillations	Systematic exposition - lecture. Examples.	3 hours
Linear and quadratic electro-optic effects. Symmetry	Systematic exposition -	4 hours

8.4. Research project [if applicable]	Teaching and learning	Observations
 S.B. Lang, Pyroelectricity: From ancient curiosity J.I. Sirotin, M.P. Saskolskaia, <i>Fizica Cristalelor</i>, 		
• O.G. Vlokh, On the dispersion of the electro–opti Kristallografiya 7, 632–633, 1962	ic coefficient in ADP and KDP c	-
Bibliography:A. Yariv, <i>Quantum Electronics</i>, Ed. John-Wiley a	and Sons, 1989	
Pyro-electric effect	Guided practical work	4 hours
Electro-optic effect	Guided practical work	4 hours
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
11. G. New, <i>Introduction to Nonlinear Optics</i> , Camb 12. D. Dragoman, Problem set	ridge University Press, 2011	
10. R. Boyd, <i>Nonlinear Optics</i> , 3rd edition, Academi	ic Press, 2008	
9. R. Dabu, I. Gruia, A. Stratan, <i>Noțiuni fundamer</i> Editura Univ. Bucuresti, 2005	ntale de optică neliniară și lucr	arı de laborator,
Bibliography:	, <u>, , , , , , , , , , , , , , , , , , </u>	~ • • • • • · · ·
Quantum theory of the nonlinear susceptibility. Nonlinear optics in the two-level approximation	Exposition. Guided work	
Examples. Induced birefringence	Exposition Cuided work	6 hours
Symmetry properties of the electro-optic tensor.	Exposition. Guided work	4 hours
phenomena. Angular and spectral acceptances	r	
Conversion efficiency in parametric nonlinear	Exposition. Guided work	2 hours
Symmetry properties of the susceptibility tensor Examples. Effective susceptibility	Exposition. Guided work	4 hours
noncollinear configurations		<u> </u>
parametric nonlinear phenomena. Collinear and		
Birefringence in uniaxial crystals. Phase matching in	Exposition. Guided work	4 hours
	techniques	Observations
 D. Dragoman, Lecture notes B.2. Tutorials [main tutorial subjects] 	Teaching and learning	_
6. D. Dragoman, <i>Optoelectronica integrata</i> , Edit	tura Univ. Bucuresti, 2003	
2016, acces liber		
5. C. Manzoni, G. Cerullo, Design criteria for ultraf	ast optical parametric amplifiers,	J. Opt. 18, 103501,
4. R. Boyd, <i>Nonlinear Optics</i> , 3rd edition, Academi		
3. G. New, <i>Introduction to Nonlinear Optics</i> , Camb	ridge University Press. 2011	
 B.E.A. Saleh, M.C. Teich, <i>Fundamental of Photo</i> Nonlinear Optics 	ornes, 2nd edition, Wiley, 2007, C	Lnapter 21:
Editura Univ. Bucuresti, 2005		
1. R. Dabu, I. Gruia, A. Stratan, Noțiuni fundamente	ale de optică neliniară și lucrări	de laborator,
References:	.	
regimes. Optical solitons	lecture. Examples.	0 110413
conjugation Pulse propagation in nonlinear media. Propagation	Systematic exposition -	6 hours
Examples of third-harmonic generation, phase	lecture. Examples.	
Coupled-mode formalism for four-wave mixing.	Systematic exposition -	2 hours
Aplications in electromagnetic field modulation		
of the polarization tensor. Polarization matrices.	lecture. Examples.	

Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this course is designed to lead to the formation of instrumental-application specific competences (such as the design of optical systems for special applications; the use of models and simulation methods, as well as generating and investigation techniques, of electromagnetic fields with relevant characteristics for certain applications), of interest for research institutes in Laser Physics and/or Physics of Materials and education. Because of the importance of the course for modern applications of high-power lasers, the content and the teaching methods have been put into correspondence with similar courses taught at other universities (Univ. Friedrich Schiller Jena, Germany, Institute of Optics, Univ. of Rochester, USA, Institut d'Optique, Palaiseau, France) as well as with the experimental facilities of the research institutes on the Măgurele platform

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark
10.4. Lecture	 Clarity, coherence and concision of exposition; Correct use of physical models and of specific mathematical methods; Ability to exemplify 	Written exam	50%
10.5.1. Tutorials	- Use of specific physical and mathematical methods for solving a given problem;	Written exam	25%
10.5.2. Practicals	 Use and correct application of experimental techniques; Data interpretation 	Lab reports	25%
10.5.3. Project [if applicable]			
10.6. Minimal require	nents for passing the exam		
Requirements for mar	k 5 (10 points scale)	anda E last the a mitteen arrange	

Correct solving of subjects indicated as required for obtaining mark 5 at the written exam Attendance of all practicals and mark 5 at colloquim

Date	Teacher's name and signature	Tutorials/Practicals instructor(s) name(s) and signature(s)
25.05.2024	Prof. dr. Daniela Dragoman	Prof. dr. Daniela Dragoman
		Conf. dr. Sorina Iftimie
Date of approval 10.06.2024		l of department, dr. Adrian Radu

DO.203.2 Physics of dielectric materials

1. Study program

University of Bucharest
Faculty of Physics
Electricity, Solid State Physics and Biophysics
Physics
Graduate/Master
Physics of advanced materials and nanostructures (in
English)
Full-time study

2. Course unit

2.1. Course title Physics of di			ielectric materia	als					
2.2. Teacher			Conf. Dr. Cice	ron Be	erbecaru				
2.3. Tutorials ins	structor(s	5)							
2.4. Practicals in	structor((s)			Conf. Dr. Cice	ron Be	erbecaru		
2.5. Year of		2.6.			Гуре of		2.8. Type	Content ¹⁾	DS
study	2	Semester	3	evalı	lation	E	of course unit	Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	0/2
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	0/28
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					
3.2.2. Research in library, study of electronic resources, field research					
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					20
3.2.4. Examination					24
3.2.5. Other activities					
2.2 Total hours of individual study					

3.3. Total hours of individual study	94
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Thermodynamics and statistical physics
4.2. competences	Using of software tools for data analysis/processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	Specifically equipped laboratory

6. Acquired specific competencies

or required speen	
Professional	1. Identification and adequate use of the specific laws and concepts of dielectric
competencies	materials physics
	2. Solving physics problems in given conditions
	3. Creative use of acquired knowledge for understanding and modelling of physical
	phenomena associated to dielectrics
	4. Analysis and communication of scientific data, communication for physics
	popularisation.
	5. Use and development of specific software tools
Transversal	6. Efficient use of scientific information and communication resources for
competencies	professional formation in English.
	7. Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

7. Course objectives

<u></u>	
7.1. General objective	Introduction and analysis of the specific physical properties of dielectrics
7.2. Specific objectives	Study of physical properties of dielectrics. Applications
	Highlighting the applications of the studied phenomena and of the
	required experimental set-ups in order to stimulate the creative and
	critical thinking for solving practical issues.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations		
Electric polarization. Electrical field in dielectrics.	Systematic exposition -	4 hours		
Linear response.	lecture. Examples.	4 110015		
Mechanisms of electric polarization: electronic, ionic,	Systematic exposition -	8 hours		
orientational, polarization of space charge.	lecture. Examples.			
Dispersion of optical polarization. Optical properties of	Systematic exposition -	4 hours		
dielectrics.	lecture. Examples.			
Relations between optical constants: refraction index,	Systematic exposition -	3 hours		
dielectric permitivity, absorption coefficient,	lecture. Examples.			
conductivity.				
Dynamical properties of dielectrics: dielectric losses,	Systematic exposition -	3 hours		
optical conductivity.	lecture. Examples.			
Dielectric spectroscopy: complex impedance,	Systematic exposition -	6 hours		
equivalent electrical circuit, Nyquist diagrams.	lecture. Examples.			
References:				
8. I. Bunget, M.Popescu, <i>Physics of solid dielectrics</i> (Elsevier, Amsterdam 1984)				

6. I. Dunget, M. Popescu, Physics of solid dielectrics (Elsevier, Amsterdam 1904)

9. A.Jonsker, *Dielectric relaxation in solids*, (Chelsea Dielectric Press, London, 1983).

10. A.Ioanid, *Probleme de fizica dielectricilor*, (Ed.Univ.Bucuresti, 2002)

8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations
	Exposition. Guided work	

8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
Tests of Clausius-Mossotti and Langevin-Debye relations	Guided practical work	4 ore
Analysis of experimental data by Kramers-Kronig transform and by using relations between optical constants	Guided practical work	4 ore
Reflectance spectra	Guided practical work	4 ore
Impedance spectra. Analysis of complex impedance and of equivalent electric circuit	Guided practical work	4 ore
Optical properties of nanostructured systems	Guided practical work	4 ore
Cole-Cole diagrams	Guided practical work	4 ore
Bode and Nyquist diagrams	Guided practical work	4 ore
Bibliography: •		
8.4. Research project [if applicable]	Teaching and learning techniques	Observations

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The content of this course is designed to lead to the formation of instrumental-application specific competences (use of models, simulation methods and investigation techniques specific to dielectrics) of interest for research institutes in Physics of Materials and education. Because of the importance of the course for modern applications, the content and the teaching methods have been put into correspondence with similar courses taught at other universities as well as with the experimental facilities of the research institutes on the Măgurele platform

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark		
10.4. Lecture	 Clarity, coherence and concision of exposition; Correct use of physical models and of specific mathematical methods; Ability to exemplify 	Written exam	50%		
10.5.1. Tutorials					
10.5.2. Practicals	 Knowledge and use of experimental techniques; Data interpretation 	Laboratory colloquium	50%		
10.5.3. Project [if applicable]					
10.6. Minimal requirements for passing the exam					

Requirements for mark 5 (10 points scale) Correct solving of subjects indicated as required for obtaining mark 5 at the written exam Attendance of all practicals and mark 5 at colloquim

Date	Teacher's name and signature	Tutorials/Practicals instructor(s)
25.05.2024	Conf. dr. Ciceron Berbecaru	name(s) and signature(s) Conf. dr. Ciceron Berbecaru
Date of approval 10.06.2024		f department, Adrian Radu

DO.204.1 Computational methods for electronic structures of materials

1. Study program

i otaaj program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title Computationa			al methods for e	lectroi	nic structures	of materials				
2.2. Teacher			Prof. dr. George Alexandru NEMNES							
2.3. Tutorials instructor(s)			Prof. dr. Georg	e Alex	andru NEMN	NES				
2.4. Practicals instructor(s)										
2.5. Year of		2.6.			Type of		2.8. Туре	Content ¹⁾	DA	A
study	2	Semester	3	evalı	lation	Е	of course unit	Type ²⁾	DC	O

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester	56	distribution: lecture	28	Tutorials/Practicals	28/0
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					30
3.2.2. Research in library, study of electronic resources, field research					20
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					20
3.2.4. Examination					24
3.2.5. Other activities					
3.3. Total hours of individual study	94				

	94	
3.4. Total hours per semester	150	
3.5. ECTS	6	

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Solid State Physics I and II, Thermodynamics and statistical
	physics, Electrodynamics, Physical Electronics, Equations of mathematical physics
4.2. competences	Using of software tools for data analysis/processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture Multimedia infrastructure (PC, videoprojector, internet conection)

5.2. for tutorials/practicals	-
-------------------------------	---

6. Acquired specific competencies

Professional	1. Identification and adequate use of computational <i>ab initio</i> tools for condensed
competencies	matter systems.
	2. Solving physics problems in given conditions.
	3. Creative use of acquired physical knowledge to understand first principles computational methods.
	 Analysis and communication of scientific data, communication for physics popularization.
	5. Use and development of specific software tools.
Transversal competencies	 6. Efficient use of scientific information resources and of communication and of resources for professional formation in English. 7. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

/ Course objectives	
7.1. General objective	Understanding of first principles methods and computational tools.
7.2. Specific objectives	- Understanding the approximate methods for many-body systems –
	perturbative and variational based methods.
	- Understanding the density functional theory method.
	- Ability to assimilate, analyse and compare diverse physical phenomena,
	employing fundamental principles.
	- Ability of analyse and interpret numerical data, especially concerning
	band structure calculations and optical properties on the bases of DFT
	codes and to formulate rigorous theoretical conclusions.
	- Ability to employ mathematical and numerical models for modelling the
	physical phenomena.
	- Ability to use theoretical methods in modelling various physical systems
	of interest.
	- Ability to develop computer programs for modelling electronic structure
	of materials

8. Contents

o. Contents		
8.1. Lecture [chapters]	Teaching techniques	Observations
Introduction. Classification of many-body approximate methods.	Systematic exposition - lecture. Examples.	2 hours
The problem of electron correlations.	Systematic exposition - lecture. Examples.	4 hours
The density functional theory (DFT). Hohenberg-Kohn theorems.	Systematic exposition - lecture. Examples.	2 hours
Kohn-Sham method. Kohn-Sham equations.	Systematic exposition - lecture. Examples.	2 hours
Functionals for the exchange and correlation terms. The local density approximation (LDA) and local spin density approximation (LSDA). The GGA approximation.	Systematic exposition - lecture. Examples.	4 hours

Orbital dependent functionals: self-interaction	Systematic exposition -	4 hours
correction (SIC) and LDA+U approximation. Hybrid	lecture. Examples.	
functionals.		
Ab initio numerical techniques. Pseudopotentials.	Systematic exposition -	4 hours
	lecture. Examples	
Semilocal pseudopotentials. Ultrasoft	Systematic exposition -	2 hours
pseudopotentials.	lecture. Examples	
Extensions: time dependent density functional theory.	Systematic exposition -	2 hours
	lecture. Examples	
GW approximation. Applications.	Systematic exposition -	2 hours
	lecture. Examples	

References:

- **11.** H. Bruus, K. Flensberg, *Many-Body Quantum Theory in Condensed Matter Physics: An Introduction* (Oxford University Press, Oxford 2004).
- **12.** R.M. Martin, Electronic structure: basic theory and practical methods (Cambridge University Press, Cambridge, 2004).
- 13. W. Nolting, Fundamentals of Many-body Physics (Springer Verlag, Berlin, 2009).

		-
8.2. Tutorials [main tutorial subjects]	Teaching and learning	Observations
	techniques	Observations
Elaboration of a numerical code to implement the	Exposition. Guided work	4 ore
Hartree-Fock method.	1	
SIESTA method: presentation. Advantages and	Exposition. Guided work	4 ore
disadvantages of the method.		
SIESTA method for band structure calculations in bulk	Exposition. Guided work	4 ore
semiconductors and nanostructures.		
SIESTA method for investigating defects in	Exposition. Guided work	4 ore
semiconductor systems.		
Calculation of phonon band structures.	Exposition. Guided work	4 ore
Calculation of optical properties.	Exposition. Guided work	4 ore
Ab initio techniques for magnetic materials.	Exposition. Guided work	4 ore
Bibliography:		
SIESTA Manual, https://departments.icmab.es/lee	m/siesta/	
8.3. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
	Guided practical work	4 ore
8.4. Research project [if applicable]	Teaching and learning techniques	Observations

Bibliography:

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of

similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

10. Assessment

 Explicitness, coherence and concision of scientific statements; Correct use of physical models 	Written and oral exam	final mark 50%
- Correct use of privilear models		5070
and of specific mathematical methods; - Ability to analyse specific		
- Use of specific physical and mathematical methods and	Homework, research projects	50%
- Knowledge and correct use of specific experimental techniques		
F (F		
ts for passing the exam		
(10 points scale) ed subjects (for mark 5) in final exam) (10 points scale) s in final exam	1	
	 methods; Ability to analyse specific examples; Use of specific physical and mathematical methods and techniques; Knowledge and correct use of specific experimental techniques Data processing and analysis; ts for passing the exam (10 points scale) d subjects (for mark 5) in final exam	methods; - Ability to analyse specific examples; - Use of specific physical and mathematical methods and techniques; - Knowledge and correct use of specific experimental techniques - Data processing and analysis; ts for passing the exam (10 points scale) d subjects (for mark 5) in final exam (10 points scale)

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
10.06.2024	Prof. dr. George Alexandru	
	Nemnes	Prof. dr. George Alexandru Nemnes
Date of approval	Head of	department,
10.06.2024	Conf. dr.	Adrian Radu

DO.204.2 Advanced methods in statistical physics

1. Study program

i otaa program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Physics of Advanced Materials and Nanostructures (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit t	itle	Advanced methods in statistical physics							
2.2. Teacher	ł			Lect. dr. Virgil V. Băran					
2.3. Tutorials/Pra	2.3. Tutorials/Practicals instructor(s) Lect. dr. Virgil V. Băran								
2.4. Year of		2.5.		2.6	5. Type of		2.7. Type	Content ¹⁾	DS
study	2	Semester	3	ev	aluation	Е	of course		
							unit		
								Type ²⁾	DO
1) 7									

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

	11			
4	distribution:	2	Practicals/Tutorials	2
-	Lecture	2		2
56	Lecture	28	Practicals/Tutorials	28
	Lecture	20	i iucucuis, i utoriuis	20
, der				hours
Distribution of estimated time for study h				
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				
3.2.2. Research in library, study of electronic resources, field research				
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				
3.2.4. Preparation for exam				
3.2.5. Other activities				
.				
	course lectron rials/pro	1 Lecture 56 Lecture udy	4 Lecture 2 56 Lecture 28 idy	4 Lecture 2 Practicals/Tutorials 56 Lecture 28 Practicals/Tutorials idy

3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Quantum Statistical Physics, Electrodynamics
4.2. competences	Knowledge about: mechanics, algebra, solving differential equations

5. Conditions/Infrastructure (if necessary)

Solutions , Initiatiatiatiatia						
5.1. for lecture	Video projector					
5.2. for practicals/tutorials						

6. Specific competences acquired

o. opecnic comp	etences acquirea
Professional	• Identify and proper use of the main physical laws and principles in a given context: the use
competences	of the concepts of statistical quantum mechanics for strongly interacting systems
	Solving problems of physics under given conditions
	• Use of the physical principles and laws for solving theoretical or practical problems with
	qualified tutoring
	• Rigorous knowledge of quantum theory, concepts, notions and problems in the area of
	modern nuclear physics
	Ability to use this knowledge in interpretation of experimental result
	• Understanding the role of the interaction, of the particle nature and of the dimensionality
	over the dynamical properties
	• Developing the computational abilities and a sound theoretical knowledge of the studied
	problems
Transversal	• Efficient use of sources of information and communication resources and training assis-
competences	tance in a foreign language
_	• Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

7. Course objectives

/ Course objectives		
7.1. General objective	- Understanding the specific feature of the quantum systems	
	composed from strongly correlated identical particles	
	Developing the capability to assimilate, analyse and compare	
	diverse phenomena, starting from basic principles	
	- Developing the ability to analyse and interpret the experimental	
	data and to formulate rigorous theoretical conclusions	
	- Developing the ability to apply mathematical models and	
	adequate numerical procedures	
7.2. Specific objectives	Gain the ability to work with theoretical methods of quantum many-body	
	systems adapted to strongly interacting systems	
	Acquire the skills to describe and calculate the physical properties of	
	quantum many-body systems involved in different physical conditions.	

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
The formalism of the Green functions:		
General properties of Green functions (symmetry,	Systematic exposition -	8 hours
Lehman representations), physical interpretation	lecture. Examples	8 110015
for the retarded Green function.	_	
The formalism of the density functional:		
The theory of the density functional. Hohenberg-	Systematic expection	6 hours
Kohn theorems. The Kohn-Sham equations.	Systematic exposition - lecture. Examples	
Approximate functionals. Introduction in the theory	lecture. Examples	
of the time dependent density functional.		
The dynamics of the Bose-Einstein condensate	Systematic exposition -	6 hours

The Gross-Pitaevskii equation. Elementary excitations and collective modes. Solitons. Traps for condensates for finite temperature.	lecture. Examples	
From the integral Hall effect to the fractional Hall effect : Strong correlated systems and the quasiparticle concept. Laughlin theory. The theory of compound fermions.	Systematic exposition - lecture. Examples	6 hours
Ginzburg–Landau theory of superconductivity. Basic equations. From type-I superconductor to type-II superconductors.	Systematic exposition - lecture. Examples	4 hours

Bibliography:

- **8.** E. Lipparini, *Modern many-particle physics. Atomic gases, quantum dots and quantum fluids*, World Scientific, 2003
- 9. R.G. Paar, W. Yang, Density functional theory for atoms and molecules, Oxford UP,1989
- 10. C.A. Ullrich, Time-Dependent Density Functional Theory, Oxford UP, 2012
- 11. J.K. Jain, Composite fermions, Cambridge UP, 2007
- 12. T. Chakraborty, P. Pietilainen, The quantum Hall effects, Fractional and Integral, Springer 1995
- 13. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge UP, 2008
- 14. Z.F. Ezawa, Quantum Hall effects, World Scientific, 2007
- 15. Fetter A.L., J.D. Walecka, Quantum theory of Many Particle systems (McGraw Hill, New-York)
- **16.** W. Buckel, R. Kleiner, *Superconductivity: Fundamentals and Applications*, WILEY-VCH Verlag GmbH 2004

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Galitskii-Migdal theorems. The relation with the observables. Differential equations. Correlation functions:definition, general properties, the similarity with the Green functions.	Problem solving	6 hours
Applications of the Green formalism for various systems. The Thomas-Fermi approximation and its extensions	Problem solving	4 hours
Applications of Density Functional Theory	Problem solving	4 hours
Collective dynamics of Bose-Einstein condensates	Problem solving	4 hours
The theory of compound fermions.	Problem solving	4 hours
Superconductivity: surface energy and thermodynamic critical field in Ghinzburg-Landau theory. Vortex lattice. Josephson tunnelling.	Problem solving	6 hours
Bibliography:		

A.S. Alexandrov Theory of Superconductivity .From Weak to Strong Coupling, IOP Publishing Ltd 2003

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark				
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test and oral examination	60%				
10.5.1. Tutorials - Ability to use specific problem solving methods		Homeworks	40%				
10.6. Minimal requirements for passing the exam							
Requirements for mark 5 (10 points scale)							
At least 50% of exam score and of homeworks.							

Date 10.06.2024	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
10.00.2024	Lect. dr. Virgil V. Băran	Lect. dr. Virgil V. Băran
Date of approval		Head of Department

Date of approval 10.06.2024

Conf. dr. Adrian Radu

DO.205.1 Physics of Semiconductor Devices

1. Description of the program

i Description of the program	
1.1. Higher education institution	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid-State Physics, and Biophysics
1.4. Field of Study	Physics
1.5. Level	Master of Science
1.6. Academic Program Title	Physics of Advanced Materials and Nanostructures
1.7. Attendance	Required according to the schedule

2. Information on course

2.1. Title Physics of Se			emiconductor]	Devic	es				
2.2. Instructor (lectures)				Associate Prof.	dr. Pe	trică Cristea			
2.3. Instructor (recitation classes))									
2.4. Instructor (p	2.4. Instructor (practical activities)			Associate Prof.	dr. Pe	trică Cristea			
2.5. Year of		2.6. Semester		2.7.			2.8. Course	Content ¹⁾	DS
study	2		3	Evalu	ation	E	type	Attendance ²⁾	DO

¹⁾ thoroughgoing study (DA), synthesis discipline (DS); ²⁾ mandatory discipline (DI), optional discipline (DO), facultative discipline (DFac)

3. Time allocated (hrs/semester)

3.1. hrs./week	4	lectures	2	practical activities	2
3.2. Total hrs./semester	56	lectures	28	practical activities	28
Time distribution on student activities					hrs.
3.2.1. Reading of manuals, lecture note	s, refe	rences			30
3.2.2 Documenting at library and using electronic resources 20					20
3.2.3. Completing home work for practical activities and writting short reports on experiments					25
3.2.4.Evaluations					19
3.2.5. Other activities					

3.3. # hrs. allocated to individual study	94
3.4. # hrs./semester	150
3.5. Allocated credits to the course	6

4. Prerequisites

4.1. curriculum	Attending the lectures on: Electricity and Magnetism, Thermodynamics and Statistica	
	physics, Electronics, Quantum Mechanics, Solid-State Physics	
4.2. Skills	Use of software packages for data analysis and processing	

5. Requirements

5.1. lectures	Multimedia room (video projector)
5.2. for conducting the	- Multimedia room (video projector)-
practical activities	3 to4 pc stations (minimum core I3)
	- OS Linux / Windows 7

6. Specific skills acquired

L	1
Professional skills	 Using the laws of classical electromagnetism and of the statistical notions to describe the semi-classical and quantum behavior of modern semiconductor devices. Creatively applying the knowledge acquired in order to understand and model the parameters and characteristics of modern semiconductor devices. Communicate and analyze didactic and scientific information on physics. Ability to make use of specific scientific software packages.
Attitudinal skills	 5. Efficient use of information sources, communication resources and vocational training, including in a language of international circulation. 6. Carrying out professional tasks in an efficient and responsible manner, in compliance with the specific legislation, ethics and deontology.

7. The course aim at (based on the grid of specific skills accumulated)

. The course and at (based on the gra of specific skins accumulated)					
7.1. General	Familiarize students with the operating principles and the applications				
<i>1</i> .1. General	of the main semiconductor devices used by modern electronic circuits.				
	Understanding of the general principles underlying the operation of				
	semiconductor devices.				
7.2. Specific	Introducind students to modern technologies related to synthesis of				
<i>i.z.</i> specific	semiconductor materials.				
	Familiarize students with software packages used in semiconductor				
	device modeling.				
	Familiarize students with software packages used in semiconductor				

8. Content

8.1. Lectures	Teaching method	hrs.
Types of semiconductor materials	Systematic presentation - lecture	2
Main technologies dedicated to semiconductor materials	Systematic presentation - lecture	2
p-n Junctions	Systematic presentation - lecture	2
Bipolar transistors	Systematic presentation - lecture	2
MOSFET structures	Systematic presentation - lecture	2
Structuri MESFET si MODFET	Systematic presentation - lecture	2
Tunnel Diodes	Systematic presentation - lecture	4
Resonant Devices	Systematic presentation - lecture	4
Photonic devices	Systematic presentation - lecture	2
Modeling of Semiconductor Devices. Processing of the results and extracting physical data of interest	Systematic presentation - lecture	6
References : 1. S. M. Sze and Kwok K. Ng, <i>Physics of Semicond</i>	luctor Devices, Wiley Interscience 2007	7

2. S. M. Sze, Semiconductor Devices, Physics and Te		
3. M. Dragoman, D. Dragoman – <i>Nanoelectronics</i> :	Principles and Devices, Artech	House, 2nd edition,
Boston, U.S.A., 2009		
4. I. Munteanu, <i>Fizica solidului</i> , Editura Univ. Buc	curesti, 1993	
5. L. Ion, Solid-State Physics - Lecture Notes		
6. P. Cristea, Dispozitive Electronice Speciale, Vol. 1	l, Editura Univ. Bucuresti, 1999	
8.2. Recitation classes [topics discussed]	Teaching method	hrs.
8.3. Practical activities [laboratory topics and projects]	Teaching method	hrs.
Numerical study of the influence of doping on electrical properties	Assisted practical activity	2
Numerical study of p-n junctions and multi-junction structures. The influence of size reduction	Assisted practical activity	4
Numerical study of bipolar transistors	Assisted practical activity	8
Simulation and design of MOSFET structures	Assisted practical activity	4
Simulation and design of MODFET structures	Assisted practical activity	6
Simulation and design of resonant structures	Assisted practical activity	4
References		
 S. M. Sze, Semiconductor Devices, Physics and Tech P. Cristea, Dispozitive Electronice Speciale, Vol. 1, F nanoHUB: <u>https://nanohub.org/</u> 		VMD
8.4. Project [only for those disciplines having a semester project included in the curriculum]	Teaching method	hrs.
References:		

9. Corroborating the contents of the discipline with the expectations of main representatives of epistemic communities, professional associations and representative employers in the field related to the program

To decide about the content, the teaching/learning methods, the instructor made the content compatible to similar subjects taught at universities in the country and abroad (University of Illinois, University of Cambridge, MIT). The content of the discipline complies to the requirements of employment in research institutes in physics.

10. Evaluations and gradind

Type of activity	10.1. Evaluation items	10.2. Evaluation methods	10.3. Pondere din nota finală
10.4. Lectures	 Exposure clarity, coherence and conciseness Understand correctly the principles, models, formulas and relations of calculation Ability to provide and make use of relevant arguments 	oral examination	50%
10.5.1. Recitation classes			
10.5.2. Practical activities	- Ability to use software packages as WinGreen, RTD, HEMT, SelfHEMT software packages	Practical test	50%

10.5.3. Project [[only for			
those disciplines having a			
semester project included			
in the curriculum]]			
10.6. Minimum standard of performance			
	-		
Getting a minimum score	of 5		
Completing all required pra	ctical work and passing of the prac	tical test (at least a score 5)	
	ired questions at the final (at leas		

Completed on 10.06.2024

Instructor's signature

Conf. dr. Petrica Cristea

Date of approval 10.06.2024

Head of the Department, Associate Prof. dr. Adrian Radu

DO.205.2 Electrical and optical characterization of semiconductors

1. Study program

i study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)/Physics of advanced materials and nanostructures
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title	e Electrical ar				nd optical characterization of semiconductors				
2.2. Teacher			Conf.dr. Florin	Stanc	ulescu				
2.3. Tutorials ins	structor(s	5)							
2.4. Practicals instructor(s)		Lect. Dr. Sorina Iftimie							
2.5. Year of		2.6.		2.7.	Type of		2.8. Type	Content ¹⁾	DS
study	2	Semester	3 evalu		lation	Е	of course unit	Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	0/2
3.2. Total hours per semester		distribution: lecture	28	Tutorials/Practicals	0/28
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own cou	irse no	otes, manuals, lecture	notes,	bibliography	30
3.2.2. Research in library, study of elec	resources, field resea	arch		25	
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks				25	
3.2.4. Examination			14		
3.2.5. Other activities					
2.2. Total have after dividual at dec					

3.3. Total hours of individual study	94
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Optics, Equations of Mathematical Physics, Solid State Physics
4.2. competences	Using of software tools for data analysis/processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	-laboratory set-ups for electrical and optical characterization of

semiconductors

6. Acquired specific competencies

· · · · · · · · · · · · · · · ·	
Professional competencies	1. Identification and adequate use of physics laws in a given context; identification and adequate use of notions and specific physics laws for semiconductors.
competencies	 Solving physics problems in given conditions.
	3. Creative use of acquired physical knowledge to understand and to construct models for physical processes and properties of semiconductors.
	4. Analysis and communication of scientific data, communication for physics popularisation.
	5. Use and development of specific software tools.
Transversal competencies	 6. Efficient use of scientific information resources and of communication and of resources for professional formation in English. 7. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology.

7. Course objectives

7. Gourse objectives	
7.1. General objective	Introduction and analysis of the physical methods in semiconductor
	characterisation
7.2. Specific objectives	Study of structure of measurement systems and of uncertainty in
	semiconductor measurements.
	Analysis of most important electrical characterisation methods of
	semiconductors. Analysis of most important optical characterisation
	methods of semiconductors.
	Highlighting of essential problems in understanding of specific
	phenomena, in order to stimulate creative and critical thinking în solving
	problems.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations
Evaluation of the uncertainty of measurement;	Systematic exposition - lecture. Examples.	2 hours
Noise in measurement systems;	Systematic exposition - lecture. Examples.	2 hours
Resistivity measurement (direct method, two probe method, four probe method, van de Pauw method). Temperature dependence;	Systematic exposition - lecture. Examples.	6 hours
Determination of the carrier concentration, the type of conduction and the mobility of the charge carriers;	Systematic exposition - lecture. Examples.	4 hours
Determination of the lifetime and the diffusion length of minority carriers;	Systematic exposition - lecture. Examples.	2 hours

Characterization of the electrically active centers by the DLTS method;	Systematic exposition - lecture. Examples.	2 hours
Interaction of electromagnetic radiation with semiconductors. Optical coefficients;	Systematic exposition - lecture. Examples.	2 hours
Spectrophotometric methods for the characterization of semiconductors;	Systematic exposition - lecture. Examples.	2 hours
Measurement of the impurities concentration and of the band gap energy;	Systematic exposition - lecture. Examples.	2 hours
Ellipsometric methods for the characterization of semiconductors;	Systematic exposition - lecture. Examples.	2 hours
SUPPLEMENTARY SUBJECTS		
Roughness and granulation analysis;	Systematic exposition - lecture. Examples.	1 hours
The use of SNOM and confocal microscopy in the characterization of semiconductors;	Systematic exposition - lecture. Examples.	1 hours

References:

- 1. Alain C. Diebold "Handbook of Silicon Semiconductor Metrology", Marcel Dekker, 2001;
- 2. K Schroder, Semiconductor Material And Device Characterization, Wiley, 2006
- **3.** H. Czichos, T. Sait, Leslie Smith, "Springer Handbook of Materials Measurement Methods", Springer 2006;
- W.R.Runyan, T.J.Shaffner, "Semiconductor Measurements and Instrumentation", McGraw-Hill, NY,1997;
- 5. John G. Webster , "The Measurement, Instrumentation, and Sensors Handbook", CRC Press 1999;
- **6.** Walt Boyes, "Instrumentation Reference Book", BUTTERWORTH HEINEMANN (Elsevier), 2003;
- 7. Annual Book of ASTM Standards, vol. 10.04 Electronics (I) 2006
- 8. Annual Book of ASTM Standards, vol. 10.05 Electronics (II) 2006
- **9.** Semyon G. Rabinovich, "Evaluating Measurement Accuracy", Springer, 2010
- 10. Toru Yoshizawa, "Handbook of Optical Metrology", CRC Press Taylor & Francis 2009
- 11. Paolo Fornasini, "The Uncertainty in Physical Measurements", Springer, 2008
- **12.** Roy M. Howard, "Principles of Random Signal Analysis and Low Noise Design", Wiley 2002
- **13.** Horst Czichos, Tetsuya Saito, Leslie Smith "Springer Handbook of Metrology and Testing", Springer 2011;
- **14.** Fridman, A.E., "The Quality of Measurements", Springer 2012;
- **15.** Vladimir Murashov, John Howard, "Nanotechnology Standards", Springer 2011;

8.2. Tutorials [main tutorial subjects]	Teaching and learning techniques	Observations	
Bibliography:			
8.3. Practicals [research subjects, projects]	Teaching and learning	Observations	

	techniques	
Determination of semiconductor resistivity by direct method, method of two probes, method of four probes, method of van Pauw. Evaluation of the measurement uncertainty of resistivity	Guided practical work	4 hours
Determination of the type conduction by Hall effect, by the hot / cold probe method, the rectifier contact method and the three probe method	Guided practical work	4 hours
Determination of mobility	Guided practical work	4 hours
Measurement of carrier concentration by CV method.	Guided practical work	4 hours
Determination of the life time by the method of photoconduction relaxation	Guided practical work	4 hours
Determination of some physical quantities, characteristics of semiconductors, by transmission spectrophotometry	Guided practical work	4 hours
ADDITIONAL WORKS		
Analysis of roughness and granulation by SNOM, AFM, and SEM microscopy methods;	Guided practical work	4 hours
8.4. Research project [if applicable]	Teaching and learning techniques	Observations

Bibliography:

- Alain C. Diebold "Handbook of Silicon Semiconductor Metrology", Marcel Dekker, 2001;
- K Schroder, Semiconductor Material And Device Characterization, Wiley, 2006
- W.R.Runyan, T.J.Shaffner, "Semiconductor Measurements and Instrumentation", McGraw-Hill, NY,1997;
- Annual Book of ASTM Standards, vol. 10.04 Electronics (I) 2006
- Annual Book of ASTM Standards, vol. 10.05 Electronics (II) 2006
- Semyon G. Rabinovich, "Evaluating Measurement Accuracy", Springer, 2010
- Toru Yoshizawa, "Handbook of Optical Metrology", CRC Press Taylor & Francis 2009
- Paolo Fornasini, "The Uncertainty in Physical Measurements", Springer, 2008

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight în final mark 50%			
10.4. Lecture	 Explicitness, coherence and concision of scientific statements; Correct use of physical models and of specific mathematical methods; Ability to analyse specific examples; 	Written and oral exam				
10.5.1. Tutorials						
10.5.2. Practicals- Knowledge and correct use of specific experimental techniques - Data processing and analysis;Colloquium, Homework,5						
10.5.3. Project [if applicable]						
10.6. Minimal requirements for passing the exam						
Requirements for mark	5 (10 points scale)					
Correct solving of subjects indicated as required for obtaining mark 5.						

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2024	Conf.dr. Florin Stanculescu	
		Lect.dr.Sorina Iftimie
Date of approval	Head of	department,
10.06.2024	Conf. dr.	Adrian Radu

DO.212.1 Special electronic and opto-electronic devices

1. Study program

1. Study program			
1.1. University	University of Bucharest		
1.2. Faculty Faculty of Physics			
1.3. Department	Electricity, Solid State Physics and Biophysics		
1.4. Field of study	Physics		
1.5. Course of study	Graduate/Master		
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in		
	English)		
1.7. Mode of study	Full-time study		

2. Course unit

2.1. Course titleSpecial electr			ronic and opto-e	lectror	nic devices				
2.2. Teacher			Prof. univ. dr. S	Stefan	ANTOHE				
2.3. Tutorials instructor(s)									
2.4. Practicals instructor(s)		Prof. univ. dr. S	Stefan	ANTOHE					
2.5. Year of		2.6.		2.7.	Type of		2.8. Type	Content ¹⁾	DS
study	2	Semester	1 evalu		uation	Е	of course unit	Type ²⁾	DO
							unit		

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	in curriculum 4 distribution: 2 Tutorials/Pr		Tutorials/Practicals	0/2	
3.2. Total hours per semester	40	distribution: lecture	20	Tutorials/Practicals	0/20
Distribution of estimated time for study					hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				25	
3.2.2. Research in library, study of electronic resources, field research			25		
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks			25		
3.2.4. Examination			10		
3.2.5. Other activities					
2.2. Total hours of individual study					

3.3. Total hours of individual study	85	
3.4. Total hours per semester	125	
3.5. ECTS	5	

4. Prerequisites (if necessary)

4.1. curriculum	Electricity and magnetism, Physics of Semiconductors, Physics of Organic Thin Films
4.2. competences	Electrical measurements. Using of software tools for data analysis/processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, videoprojector, internet conection)
5.2. for tutorials/practicals	-Experimental setups from laboratories of MDEO Center

6. Acquired specific competencies

Professional	1. Identificartion and adequate use of physics laws in a given context; identification
competencies	and adequate use of notions and specific physics laws for electronic devices based
	on both organic and inorganic thin films.
	2. Understanding the mechanism of charge carrier transport at interfaces:
	Metal/Semiconductor; Semiconductor/Semiconductor.
	3. Knowledge to understanding of the physical processes in hybrid structures based
	on Organic/Inorganic thin films.
	4. Analysis and communication of scientific data, communication for physics
	popularisation.
Transversal	5. Efficient and responsible implementation of professional tasks, with observance of
competencies	the laws, ethics and deontology.
-	6. Efficient use of the available scientific information resources (specialized books
	research papers, internet search)
	7. Ability to communicate in English the scientific results to a broad audience in a
	rigorous and clearly structured manner

7. Course objectives

7.1. General objective	Study of specific charge transport mecanisms in the electronic and optoelectronic devices based on organic and hybrid Organic/Inorganic thin films
7.2. Specific objectives	Theory of Depletion Layer at interface Metal/Semiconductor Study of charge transport mecanism at Metal/Semiconductor Interface. Analysis of specific charge transport models in Organic/Inorganic Interfaces. Highlighting of essential problems in understanding of excitonic mechanism for photogeneration in the organic photovoltaic cells

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations
Phyisical Proccesses at Metal/Semiconductor Interface:	Systematic exposition -	
-Classification of the M/S contacts (ohmic contact, blocking	lecture. Examples.	
contact);		
- Theory of the depletion layer;		hours
- Transport mechanism of the charge carriers through the		· nours
M/S contact: (i) thermionic emission model of Bethe; (ii)		
Difussion model of Schottky; Mixt theory of thermionic		
emission and diffusion of Krowel and Sze.		
Theory of Space Charge Limited Currents (SCLC) –		6 hours
Space Charge Limited Curents – conditions of appearence		
Curent –Voltage (I-V) characteristics of SCLC		
currents in a free traps solid	Systematic exposition -	
• I-V characteristics of SCLC in a solid with a	lecture. Examples.	
discret distribution of traps in the Band Gap (BG)		
I-V characteristics of SCLC in a solid with an		

Determination of charge carrier transport parameters in an organic thin filmMeasurements and data analysis and processing4 oreMeasuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parametersMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current IsMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement:Measurements and data analysis and processing4 ore			
exponential trap distribution the (BG) Electrical properties of Organic/Inorganic Diodes (OI) Charge carrier transport mechanism in O/IDiodes The bipolar Current-Voltage (I-V) Characteristics of OI Diodes The O/I Admitance characteristics for a large range of frequency Semiconducting Organic Inorganic Surface Analysis Spectroscopy (SOISAS) Organic Photovoltaic Cells Photovoltaic Cells from Second generation of SC (based on A2-B6 compounds) Photovoltaic Cells from Third generation of SC (based on A2-B6 compounds) Photovoltaic Cells from forth generation of SC (based on nanostructured inorganic electrode sensitized with an organic semiconductors (I) Small molecules (II) polymers anostructured inorganic electrode sensitized with an organic semiconductor S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). M.A. Lampert. Reports on Progress in Physics, 27:329, 1964. S. Antohe, Materiale și Dispozitive Electronice Organice (Editura. Universității din București București, 1936) S. Antohe, Materiale și Dispozitive Electronice Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 S.Laboratory [main subjects of practical works] Teaching and learning techniques Observations Measurements and data analysis and processing Photovoltai of 4 ore analysis and processing Measurements and data analysis and processing<td></td><td></td><td></td>			
Electrical properties of Organic/Inorganic Diodes (OI) Systematic exposition - 4 hours • Charge carrier transport mechanism in O/IDiodes The bipolar Current-Voltage (L-V) Characteristics of OI Diodes 4 hours • The O/I Admitance characteristics for a large range of frequency • Semiconducting Organic Inorganic Surface 4 hours - Photovoltaic Cells Systematic exposition - 4 hours - Photovoltaic Cells from Second generation of SC (based on n2-B6 compounds) Systematic exposition - 4 hours • Photovoltaic Cells from Third generation of SC (based on nanostructurel inorganic electrode sensitized with an organic semiconductors (i) Small molecules (ii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) Systematic exposition - 4 hours Bibliography: 1. S. Antohe, Materiale și Dispozitive Electronic Organice (Editura. Universității din București București, 1996) S. Antohe, Materiale și Dispozitive Electronic Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 8.2. Laboratory [main subjects of practical works] Teaching and learning techniques Observations Measurements and data analysis and processing 4 ore analysis and processing 4 ore analysis and processing 4 ore analysis and processing Measurements of I-V characteristics at forward and reverse Vias of OI diodes: Ag/p-Si/PTCD/In si Ag/p-Si/CuVCc/Cu with determination of depletion layer parameters			
Charge carrier transport mechanism in O/IDiodes The bipolar Current-Voltage (I-V) Characteristics of OI Diodes The O/I Admitance characteristics for a large range of frequency Semiconducting Organic Inorganic Surface Analysis Spectroscopy (SOISAS) Organic Photovoltaic Cells Photovoltaic Cells from Second generation of SC (based on nA2-B6 compounds) Photovoltaic Cells from Third generation of SC (based on naostructured liorganic electrode sensitized with an organic semiconductors (I) Small molecules (ii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) Photovoltaic Cells from forth generation of SC (based on naostructured liorganic electrode sensitized with an organic semiconductor (I) Small molecules (iii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) Photovoltaic Cells from forth generation of SC (based on naostructured liorganic electrone sensitized with an organic semiconductor Bibliography: 1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). 2. M.A. Lampert. Reports on Progress in Physics, 27:329, 1964. 3. S. Antohe, Materiale şi Dispozitive Electronice Organice (Editura. Universității din București București, 1996) 4. S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thiri Films, in Handbook organic Electronics and Photonics: Electronic Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 8.2. Laboratory [main subjects of practical works] Measurements and data 4 ore analysis and processing Measurements and data analysis and processing Measurements and data analysis and processing Measurements and data analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing		Systematic exposition -	4 hours
The bipolar Current-Voltage (I-V) Characteristics of OI Diodes The OI Admitance characteristics for a large range of frequency Semiconducting Organic Inorganic Surface Analysis Spectroscopy (SOISAS) Crganic Photovoltaic Cells Photovoltaic Cells from Second generation of SC (based on A2-B6 compounds) Photovoltaic Cells from Third generation of SC (based on nanostructured inorganic electrode sensitized with an organic semiconductors (i) Small molecules (ii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) Photovoltaic Cells from forth generation of SC (based on nanostructured inorganic electrode sensitized with an organic semiconductor Bibliography: S. Shube, Materiale și Dispozitive Electronice Organice (Editura: Universității din Bucureșt București, 1996) S. Santohe, Materiale și Dispozitive Electronice Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 S. Laboratory [main subjects of practical works] Teaching and learning techniques Non-Ohmic effect in M1/organic semiconductor/M2 structures Non-Ohmic effect in M1/organic semiconductor/M2 measurements of LV characteristics at forward and reverse measurement of LV characteristics in the dark of a photovoltaic cell with determination of scies resistance Rs, shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing shunt resistance, idea		-	
of OL Diodes • The O/I Admitance characteristics for a large range of frequency • Semiconducting Organic Inorganic Surface Analysis Spectroscopy (SOISAS) Organic Photovoltaic Cells Systematic exposition - lecture. Examples. 4 hours Photovoltaic Cells from Second generation of SC (based on organic semiconductors (i) Small molecules (ii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) Photovoltaic Cells from forth generation of SC (based on organic semiconductors (I) Small molecules (ii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) Photovoltaic Cells from forth generation of SC (based on nanostructured linorganic electrode sensitized with an organic semiconductor Systematic exposition - lecture. Examples. 4 hours Bibliography: 1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). 8. Matche, Materiale si Dispositive Electronic Organice (Editura. Universității din București, București, 1996) 8. S. Antohe, Material o Jobelectronic Devices Based on Organic Thin Films, in Handbook o Organic Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 0bservations 8.1. Laboratory [main subjects of practical works] Teaching and learning techniques 0bservations Measurements of 1-V characteristics at forward and reverse visas of O1 diodes: Ag/p-Si/PTCD/In şi Ag/p-Si/CUPC/Cu analysis and processing 4 ore analysis and processing Measurements of 1-V characteristics in the dark of a Photovoltaic cell with determination of series resistance Rs, shuut res	o i	feetaret Enamprest	
The O/I Admitance characteristics for a large range of frequency Semiconducting Organic Inorganic Surface Analysis Spectroscopy (SOISAS) Organic Photovoltaic Cells From Second generation of PV Photovoltaic Cells from Second generation of SC (based on organic semiconductors (i) Small molecules (ii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) Photovoltaic Cells from forth generation of SC (based on nanostructured inorganic clectrode sensitized with an organic semiconductor Bibliography: S. Antohe, Materiale și Dispozitive Electronice Organice (Editura. Universității din București București, 1996) S. Antohe, Materiale și Dispozitive Electronice Organice (Editura. Universității din București București, 1996) S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook of Organic Electronics and Photonics: Electronic Mercies J. H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 S. Laboratory [main subjects of practical works] Teaching and learning techniques Non-Ohmic effect in M1/organic semiconductor/M2 Measurements and data analysis and processing measurements of I-V characteristics at forward and reverse Measurements of I-V characteristics at forward and reverse Measurements and data analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing shunt resistance, ideality fac			
of frequency • Semiconducting Organic Inorganic Surface Analysis Spectroscopy (SOISAS) Organic Photovoltaic Cells Photovoltaic Cells from Second generation of SC (based on A2-B6 compounds) - Photovoltaic Cells from Third generation of SC (based on organic semiconductors (i) Small molecules (ii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) Photovoltaic Cells from forth generation of SC (based on anostructured inorganic electrode sensitized with an organic semiconductor Bibliography: 1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). 2. M.A. Lampert. Reports on Progress in Physics, 27:329, 1964. 3. S. Antohe, Materiale şi Dispositive Electronic Dorganic (Editura. Universității din București București, 1996) 4. S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook (Organic Electronics and Photonics: Electronic Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 8.2. Laboratory [main subjects of practical works] Teaching and learning techniques Non-Ohmic effect in M1/organic semiconductor/M2 analysis and processing Measurements of 1-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parameters Measurements on 1-V characteristics in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, Ideality factor n and saturation current Is Measurements and data analysis and processing with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE. Bibliography:			
Semiconducting Organic Inorganic Surface Analysis Spectroscopy (SOISAS) Organic Photovoltaic Cells Photovoltaic Cells from Second generation of SC (based on organic semiconductors (i) Small molecules (ii) polymers Photovoltaic Cells from forth generation of SC (based on organic semiconductors (i) Small molecules (ii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) Photovoltaic Cells from forth generation of SC (based on nanostructured inorganic electrode sensitized with an organic semiconductor Bibliography: 1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). 2. M.A. Lampert. Reports on Progress in Physics, 27:329, 1964. 3. S. Antohe, Materiale şi Dispozitive Electronice Organice (Editura. Universității din București București, 1996) 4. S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook of Organic Electronics and Photonics: Electronic Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 8.2. Laboratory [main subjects of practical works] Teaching and learning techniques Non-Ohmic effect in M1/organic semiconductor/M2 Measurements and data analysis and processing Determination of charge carrier transport parameters in an organic thin film Measurements and data analysis and processing Measurements of 1-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CUPC/Cu with determination of depletion layer parameters Measurements and data analysis and processing Measurements and data analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing Shut resistance, ideality factor n and saturation current Is Measurements and data analysis and processing Shut resistance, ideality factor n and saturation current Is Measurements			
Analysis Spectroscopy (SOISAS) Systematic exposition - Organic Photovoltaic Cells Systematic exposition - Photovoltaic Cells from Second generation of SV Sectors and the sector and sectors and the sector and sectors and the sector sector and the sector and the sectors and the sector and the sectors and the sectors and the sectors and the sector and the sector and the sectors and the sectors and the			
Organic Photovoltaic CellsSystematic exposition - lecture. Examples.4 hoursPhotovoltaic Cells from Second generation of SC (based on A2-B6 compounds)Systematic exposition - lecture. Examples.4 hoursPhotovoltaic Cells from Third generation of SC (based on organic semiconductors (1) Small molecules (ii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) Photovoltaic Cells from forth generation of SC (based on nanostructured inorganic electrode sensitized with an organic semiconductorSystematic exposition - lecture. Examples.4 hoursBibliography: 1.S. S. Antohe, Materiale şi Dispozitive Electronice Bucureşti, 1996)New York, 1969)A. S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook or Organic Electronics and Photonics: Electronic Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1Observations8.2. Laboratory [main subjects of practical works]Teaching and learning techniquesObservationsNon-Ohmic effect in M1/organic semiconductor/M2 is and processingMeasurements and data analysis and processing4 ore analysis and processingMeasurement of I-V characteristics at forward and reverse vias of Ol diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CUPC/Cu with determination of depletion layer parametersMeasurements and data analysis and processing4 ore analysis and processingMeasurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shurt resistance, ideality factor n and saturation current IsMeasurements and data analysis and processingMeasureme			
-Photovoltaic effect in First generation of PV lecture. Examples. -Photovoltaic Cells from Second generation of SC (based on organic semiconductors (i) Small molecules (ii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) lecture. Examples. -Photovoltaic Cells from Third generation of SC (based on organic semiconductor (based on nanostructured inorganic electrode sensitized with an organic semiconductor lecture. Examples. Bibliography: 1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). 2. 2. M.A. Lampert. Reports on Progress in Physics, 27:329, 1964. 3. S. Antohe, Materiale şi Dispozitive Electronice Organice (Editura. Universității din București București, 1996). 4. S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook (Organic Electronics and Photonics: Electronic Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 82. 8.1. Laboratory [main subjects of practical works] Teaching and learning techniques Observations Non-Ohmic effect in M1/organic semiconductor/M2 Measurements and data analysis and processing 4 ore analysis and processing Measurements of 1-V characteristics at forward and reverse vias of Ol diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPC/Cu Measurements and data analysis and processing 4 ore analysis and processing Measurement of 1-V characteristic in the dark of a Photovoltaic cell		Systematic exposition	4 hours
-Photovoltaic Cells from Second generation of SC (based on A2-B6 compounds) -Photovoltaic Cells from Third generation of SC (based on organic semiconductors (i) Small molecules (ii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) Photovoltaic Cells from forth generation of SC (based on nanostructured inorganic electrode sensitized with an organic semiconductor			4 110013
on A2-B6 compounds) - Photovoltaic Cells from Third generation of SC (based on organic semiconductors (i) Small molecules (ii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) Photovoltaic Cells from forth generation of SC (based on nanostructured inorganic electrode sensitized with an organic semiconductor Bibliography: 1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). 2. M.A. Lampert. Reports on Progress in Physics, 27:329, 1964. 3. S. Antohe, Materiale și Dispozitive Electronice Organice (Editura. Universității din Bucureșt București, 1996) 4. S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook of Organic Electronics and Photonics: Electronic Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 8.2. Laboratory [main subjects of practical works] Non-Ohmic effect in M1/organic semiconductor/M2 Measurements and data 4 ore analysis and processing Determination of charge carrier transport parameters in an organic thin film Measurements of I-V characteristics at forward and reverse vita of OI diodes: Ag/p-Si/PCDI/In și Ag/p-Si/CuPC/Cu with determination of seture transport parameters Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of setures resistance Rs, shunt resistance, ideality factor n and saturation current Is Measurements and data 4 ore analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data 4 ore analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing shunt resistance, ideality factor n and saturation current Is Measurements and data 4 ore analysis and processing Shut resistance, ideality factor n and saturation current Is Measurements and data analysis and processing Shut resistance, ideality factor n and saturation current Is Measurements and data 4 ore	8	lecture. Examples.	
- Photovoltaic Čells from Third generation of SC (based on organic semiconductors (i) Small molecules (ii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) Photovoltaic Cells from forth generation of SC (based on nanostructured inorganic electrode sensitized with an organic semiconductor Image: Comparison of SC (based on nanostructured inorganic electrode sensitized with an organic semiconductor Bibliography: 1. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). 2. M.A. Lampert. Reports on Progress in Physics, 27:329, 1964. 3. S. Antohe, Materiale şi Dispozitive Electronice Organice (Editura. Universității din Bucureșt București, 1996) 4. S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook or Organic Electronics and Photonics: Electronic Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 8.2. Laboratory [main subjects of practical works] Teaching and learning techniques Non-Ohmic effect in M1/organic semiconductor/M2 structures Measurements and data analysis and processing Measurements of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCD/In şi Ag/p-Si/CuPC/Cu with determination of depletion layer parameters Measurements and data analysis and processing Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing			
organic semiconductors (i) Small molecules (ii) polymers and (iii) Bulkheterojunction basedon polymeric blends (iv) Photovoltaic Cells from forth generation of SC (based on anostructured inorganic electrode sensitized with an organic semiconductor Bibliography: 1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). 2. M.A. Lampert. Reports on Progress in Physics, 27:329, 1964. 3. S. Antohe, Materiale și Dispozitive Electronice Organice (Editura. Universității din Bucureșt București, 1996) 4. S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook (Organic Electronics and Photonics: Electronic Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 8.2. Laboratory [main subjects of practical works] Non-Ohmic effect in M1/organic semiconductor/M2 Attrueres Non-Ohmic effect in M1/organic semiconductor/M2 Determination of charge carrier transport parameters in an organic thin film Measurements and data analysis and processing Measurements of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In și Ag/p-Si/CUPC/Cu with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Is Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing Shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing Shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing Shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing Shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing Shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and proces			
and (iii) Bulkheterojunction basedon polymeric blends (iv) Photovoltaic Cells from forth generation of SC (based on nanostructured inorganic electrode sensitized with an organic semiconductor Bibliography: 1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). 2. M.A. Lampert. Reports on Progress in Physics, 27:329, 1964. 3. S. Antohe, Materiale şi Dispozitive Electronice Organice (Editura. Universității din București București, 1996) 4. S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook (ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 8.2. Laboratory [main subjects of practical works] Teaching and learning techniques Non-Ohmic effect in M1/organic semiconductor/M2 Measurements and data 4 ore analysis and processing Measurement of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parameters Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Is Measurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE . Bibliography:			
Photovoltaic Cells from forth generation of SC (based on nanostructured inorganic electrode sensitized with an organic semiconductor Image: Construct of the sensitized with an organic semiconductor Bibliography: 1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). 2. M.A. Lampert. Reports on Progress in Physics, 27:329, 1964. 3. S. Antohe, Materiale și Dispozitive Electronice Organice (Editura. Universității din București București, 1996) 4. S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook of Organic Electronics and Photonics: Electronic Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 8.2. Laboratory [main subjects of practical works] Teaching and learning techniques Determination of charge carrier transport parameters in an organic thin film Measurements and data analysis and processing Measurement of I-V characteristics at forward and reverse Weasurements and data analysis and processing 4 ore analysis and processing Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing Measurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE . Measurements and data analysis and processing 4 ore analysis and processing			
nanostructured inorganic electrode sensitized with an organic semiconductor Bibliography: 1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). 2. M.A. Lampert. Reports on Progress in Physics, 27:329, 1964. 3. S. Antohe, Materiale și Dispozitive Electronice Organice (Editura. Universității din Bucureșt București, 1996) 4. S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook of Organic Electronics and Photonics: Electronic Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 8.2. Laboratory [main subjects of practical works] Teaching and learning techniques Non-Ohmic effect in M1/organic semiconductor/M2 structures Non-Ohmic effect in M1/organic semiconductor/M2 structures Measurements of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In și Ag/p-Si/CuPC/Cu with determination of depletion layer parameters Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Is Measurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE . Bibliography:			
organic semiconductor Bibliography: 1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). M.A. Lampert. Reports on Progress in Physics, 27:329, 1964. 3. S. Antohe, Materiale și Dispozitive Electronice Organice (Editura. Universității din București București, 1996) S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook organic Electronics and Photonics: Electronic Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 8.2. Laboratory [main subjects of practical works] Teaching and learning techniques Non-Ohmic effect in M1/organic semiconductor/M2 structures Measurements and data analysis and processing Non-Ohmic effect in M1/organic semiconductor/M2 structures Measurements and data analysis and processing Measurements of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In și Ag/p-Si/CuPc/Cu with determination of depletion layer parameters Measurements and data analysis and processing Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance, ideality factor n and saturation current Is Measurements and data analysis and processing Measurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Measurements and data analysis and processing Bibliography: Bibliography: Beasurement seresting and tearnice analysis and processing			
Bibliography: 1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). 2. M.A. Lampert. Reports on Progress in Physics, 27:329, 1964. 3. S. Antohe, Materiale și Dispozitive Electronice Organice (Editura. Universității din București București, 1996) 4. S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook or Organic Electronics and Photonics: Electronic Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 8.2. Laboratory [main subjects of practical works] Teaching and learning techniques Observations Non-Ohmic effect in M1/organic semiconductor/M2 structures Measurements and data analysis and processing 4 ore analysis and processing Measurements of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In și Ag/p-Si/CuPc/Cu with determination of depletion layer parameters Measurements and data analysis and processing 4 ore analysis and processing Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing 4 ore analysis and processing Measurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE . Measurements and data analysis and processing 4 ore Bibliography: B			
1. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969). 2. M.A. Lampert. Reports on Progress in Physics, 27:329, 1964. 3. S. Antohe, Materiale și Dispozitive Electronice Organice (Editura. Universității din București, 1996) 4. S. Antohe, Electronic and Optoelectronic Devices Based on Organic Thin Films, in Handbook organic Electronics and Photonics: Electronic Materials and Devices, H. Singh-Nalwa (Ed (American Scientific Publishers, Los Angeles, California, USA, 2006), vol 1 8.2. Laboratory [main subjects of practical works] Teaching and learning techniques Non-Ohmic effect in M1/organic semiconductor/M2 structures Measurements and data analysis and processing 4 ore analysis and processing Neasuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parameters Measurements and data analysis and processing 4 ore analysis and processing Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Is Measurements and data analysis and processing 4 ore analysis and processing Measurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE . Measurements and data analysis and processing 4 ore analysis and processing	organice benneondatetor		
Non-Ohmic structuresM1/organic semiconductor/M2Measurements and data analysis and processingObservationsDetermination of charge carrier transport parameters organic thin filmMeasurements and data analysis and processing4 oreMeasuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parametersMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current IsMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements and data analysis and processing4 ore	Organic Electronics and Photonics: Electronic (American Scientific Publishers, Los Angeles, Califo	Materials and Devices, H.	
techniquesObservationsNon-Ohmic effect in M1/organic semiconductor/M2 structuresMeasurements and data analysis and processing4 oreDetermination of charge carrier transport parameters in an organic thin filmMeasurements and data analysis and processing4 oreMeasuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parametersMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current IsMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements and data analysis and processing4 oreBibliography:StateMeasurements and data analysis and processing4 ore	8.2. Laboratory [main subjects of practical works]		
Non-Ohmic effect in M1/organic semiconductor/M2 structuresMeasurements and data analysis and processing4 oreDetermination of charge carrier transport parameters in an organic thin filmMeasurements and data analysis and processing4 oreMeasuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parametersMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current IsMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements4 oreBibliography:Bibliography:Bibliography:Measurements and data analysis and processing4 ore		5 5	
structuresanalysis and processingDetermination of charge carrier transport parameters in an organic thin filmMeasurements and data analysis and processing4 ore analysis and processingMeasuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parametersMeasurements and data analysis and processing4 ore analysis and processingMeasurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current IsMeasurements and data analysis and processing4 ore analysis and processingMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements and data analysis and processing4 ore analysis and processingBibliography:State Proce AState Proce AState Proce A			Observations
structuresanalysis and processingDetermination of charge carrier transport parameters in an organic thin filmMeasurements and data analysis and processing4 ore analysis and processingMeasuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parametersMeasurements and data analysis and processing4 ore analysis and processingMeasurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current IsMeasurements and data analysis and processing4 ore analysis and processingMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements and data analysis and processing4 ore analysis and processingBibliography:State Proce AState Proce AState Proce A		techniques	Observations
Determination of charge carrier transport parameters in an organic thin filmMeasurements and data analysis and processing4 oreMeasuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parametersMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current IsMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements4 oreBibliography:AAAA	Non Ohmia offect in M1/i (M1)	-	
organic thin filmanalysis and processingMeasuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parametersMeasurements and data analysis and processing4 ore analysis and processingMeasurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current IsMeasurements and data analysis and processing4 ore analysis and processingMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements Bibliography:	-	Measurements and data	
Measuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parametersMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current IsMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements and processing4 oreBibliography:Bibliography:Bibliography:Bibliography:Bibliography:4 ore	structures	Measurements and data analysis and processing	4 ore
vias of OI diodes: Ag/p-Si/PTCDI/In și Ag/p-Si/CuPc/Cu with determination of depletion layer parametersanalysis and processingMeasurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current IsMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements and processing4 oreBibliography:Image: Condition of typical parameters as photoelement:Image: Condition of typical parameters as photoelement:Image: Condition of typical parameters as photoelement:	structures Determination of charge carrier transport parameters in an	Measurements and data analysis and processing Measurements and data	4 ore
vias of OI diodes: Ag/p-Si/PTCDI/In și Ag/p-Si/CuPc/Cu with determination of depletion layer parametersanalysis and processingMeasurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current IsMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements and processing4 oreBibliography:Image: Condition of typical parameters as photoelement:Image: Condition of typical parameters as photoelement:Image: Condition of typical parameters as photoelement:	structures Determination of charge carrier transport parameters in an	Measurements and data analysis and processing Measurements and data	4 ore
with determination of depletion layer parametersMeasurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current IsMeasurements and data analysis and processing4 ore analysis and processingMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements and data analysis and processing4 ore analysis and processingBibliography:Bibliography:Measurements and data analysis and processing4 ore analysis and processing	structures Determination of charge carrier transport parameters in an organic thin film	Measurements and data analysis and processing Measurements and data analysis and processing	4 ore 4 ore
Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current IsMeasurements and data analysis and processing4 oreMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements and data analysis and processing4 oreBibliography:Measurements and data4 ore	structures Determination of charge carrier transport parameters in an organic thin film Measuremets of I-V characteristics at forward and reverse	Measurements and data analysis and processing Measurements and data analysis and processing Measurements and data	4 ore 4 ore
Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Isanalysis and processingMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements and data analysis and processing4 ore analysis and processingBibliography:Bibliography:A ore analysis and processingA ore analysis and processing	structures Determination of charge carrier transport parameters in an organic thin film Measuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu	Measurements and data analysis and processing Measurements and data analysis and processing Measurements and data	4 ore 4 ore
shunt resistance, ideality factor n and saturation current IsMeasurement proceedingMeasurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements and data analysis and processing4 ore analysis and processingBibliography:Bibliography:A ore analysis and processing4 ore analysis and processing	structures Determination of charge carrier transport parameters in an organic thin film Measuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parameters	Measurements and data analysis and processing Measurements and data analysis and processing Measurements and data analysis and processing	4 ore 4 ore 4 ore
Measurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .Measurements and data analysis and processing4 oreBibliography:AAA <td< td=""><td>structures Determination of charge carrier transport parameters in an organic thin film Measuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parameters Measurement of I-V characteristic in the dark of a</td><td>Measurements and data analysis and processingMeasurements and data analysis and processingMeasurements and data analysis and processingMeasurements and data analysis and processingMeasurements and data analysis and processing</td><td>4 ore 4 ore 4 ore</td></td<>	structures Determination of charge carrier transport parameters in an organic thin film Measuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parameters Measurement of I-V characteristic in the dark of a	Measurements and data analysis and processingMeasurements and data analysis and processingMeasurements and data analysis and processingMeasurements and data analysis and processingMeasurements and data analysis and processing	4 ore 4 ore 4 ore
illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE . Bibliography:	structures Determination of charge carrier transport parameters in an organic thin film Measuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parameters Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs,	Measurements and data analysis and processingMeasurements and data analysis and processingMeasurements and data analysis and processingMeasurements and data analysis and processingMeasurements and data analysis and processing	4 ore 4 ore 4 ore
with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE . Bibliography:	structures Determination of charge carrier transport parameters in an organic thin film Measuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parameters Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Is	Measurements and data analysis and processingMeasurements and data analysis and processingMeasurements and data analysis and processingMeasurements and data analysis and processingMeasurements and data analysis and processing	4 ore 4 ore 4 ore 4 ore 4 ore
Uoc, Isc, FF, EQE, PCE . Bibliography:	structures Determination of charge carrier transport parameters in an organic thin film Measuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In și Ag/p-Si/CuPc/Cu with determination of depletion layer parameters Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Is Measurement of I-V characteristic in forth quadrant, at	Measurements and data analysis and processingMeasurements and dataMeasurements and data	4 ore 4 ore 4 ore 4 ore 4 ore
Bibliography:	structures Determination of charge carrier transport parameters in an organic thin film Measuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parameters Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Is Measurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell	Measurements and data analysis and processingMeasurements and dataMeasurements and data	4 ore 4 ore 4 ore 4 ore 4 ore
	structures Determination of charge carrier transport parameters in an organic thin film Measuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parameters Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Is Measurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement:	Measurements and data analysis and processingMeasurements and dataMeasurements and data	4 ore 4 ore 4 ore 4 ore 4 ore
	structures Determination of charge carrier transport parameters in an organic thin film Measuremets of I-V characteristics at forward and reverse vias of OI diodes: Ag/p-Si/PTCDI/In şi Ag/p-Si/CuPc/Cu with determination of depletion layer parameters Measurement of I-V characteristic in the dark of a Photovoltaic cell with determination of series resistance Rs, shunt resistance, ideality factor n and saturation current Is Measurement of I-V characteristic in forth quadrant, at illumination in A.M. 1.5 conditions of a Photovoltaic cell with determination of typical parameters as photoelement: Uoc, Isc, FF, EQE, PCE .	Measurements and data analysis and processingMeasurements and dataMeasurements and data	4 ore 4 ore 4 ore 4 ore 4 ore

- Three-Layered Photovoltaic Cell With an Enlarged Photoactive Region of Codeposited Dyes, <u>S.</u> <u>Antohe</u>, V.Ruxandra, L.Tugulea, V.Gheorghe, D. Ionaşcu, Journal de Physique III France 6, 1133-1144, (1996)
- 16. S. Antohe, L. Ion, F. Stanculescu, S. Iftimie, A. Radu and V. A. Antohe, "Fizica si tehnologia materialelor semiconductoare Lucrari practice", Ars Docendi, Universitatea din Bucuresti, 165 pages, 2016, ISBN: 978-973-558-940-0
- 17. <u>A critical review of photovoltaic cells based on organic monomeric and polymeric thin film heterojunctions</u> By:<u>Antohe, S; Iftimie, S; Hrostea, L; Antohe, VA^l</u>; <u>Girtan, M</u>, <u>THIN SOLID FILMS</u> Volume: 642 Pages: 219-231 Published: NOV 30 2017

8.3. Research project [if applicable]	Teaching and learning techniques	Observations

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (University of Kent at canterbury, Hanover University, University of Angers. The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

10. Assessment

			10.3.				
Activity type	10.1. Assessment criteria	10.2. Assessment methods	Weight în				
Activity type	10.1. Assessment Citteria	10.2. Assessment methods	0				
			final mark				
10.4. Lecture	- Explicitness, coherence and	Written and oral exam	50%				
	concision of scientific statements;						
	- Correct use of physical models						
	and of specific methods;						
	- Ability to analyse specific						
	examples;						
10.5.1. Tutorials							
10.5.2. Practicals	- Knowledge and correct use of	Colloquium	50%				
	specific experimental techniques						
	- Data processing and analysis;						
10.5.3. Project [if							
applicable]							
10.6. Minimal requirements for passing the exam							
Requirements for mark 5 (10 points scale)							
Correct solving of subjects indicated as required for obtaining mark 5.							

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
25.05.2024	Prof. univ. dr. Stefan ANTOHE	Prof. univ. dr. Stefan ANTOHE

Head of department,

Date of approval 10.06.2024

Conf. dr. Adrian Radu

DO.212.2 Physics and Technology of Thin Films

1. Study program

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Graduate/Master
1.6. Study program/Qualification	Physics of advanced materials and nanostructures (in
	English)
1.7. Mode of study	Full-time study

2. Course unit

2.1. Course title Physics and				technology of tl	nin fil	ms			
2.2. Teacher			Prof. dr. Ştefan	Anto	he				
2.3. Tutorials instructor(s)									
2.4. Practicals instructor(s)		Prof. dr. Ştefan Antohe							
2.5. Year of		2.6.			Type of		2.8. Type	Content ¹⁾	DS
study 2 Semester 4 evalu		lation	Ε	of course unit	Type ²⁾	DO			

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

	/				
3.1. Hours per week in curriculum	4	distribution: lecture	2	Tutorials/Practicals	2/0
3.2. Total hours per semester		distribution: lecture	20	Tutorials/Practicals	20/0
Distribution of estimated time for study					
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					
3.2.2. Research in library, study of elec	tronic	resources, field resea	arch		20
3.2.3. Preparation for practicals/tutorial	s/proj	ects/reports/homewor	rks		20
3.2.4. Examination					15
3.2.5. Other activities					
3.3. Total hours of individual study	-				•

3.3. Total hours of individual study	85
3.4. Total hours per semester	125
3.5. ECTS	5

4. Prerequisites (if necessary)

4.1. curriculum	Solid State Physics I, Optics, Electronics, Electrodynamics			
4.2. competences	1. Understanding the structural properties of thin films			
	2. Knowledge and understanding of optical phenomena and charge carriers			
	transport mechanisms of thin films			
	3. Knowledge and understanding of the physical processes and phenomena typical			
	for thin films based devices			
	4. Understanding underlying physical phenomena			

5.	Ability to analyze and understand relevant experimental data and to formulate
	rigorous conclusions

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Multimedia infrastructure (PC, video-projector, internet connection)			
5.2. for tutorials/practical	• Experimental set-ups in Thin Films Laboratory and Nanotechnology			
classes	Laboratory of Materials and Devices for Electronics and			
	Optoelectronics R&D Center			

6. Acquired specific competencies

0. Acquirea speen	le competencies							
Professional	1. Knowledge and explanation of the physical properties of thin films							
competencies	2. Knowledge and explanation of the physical properties of thin films based devices							
-	3. Development of specific capacities of analysis using fundamental processes and phenomena in Physics							
	4. Development of the ability to create and properly use of mathematical and numerical models applied to thin films and their applications							
	5. Analysis and communication of scientific data.							
	6. Use and development of specific laboratory equipments.							
Transversal competencies	 Efficient use of scientific information resources for professional formation in English. Efficient and responsible implementation of professional tasks, with observance of the laws, ethics and deontology. 							

7. Course objectives

7.1. General objective	Knowledge and understanding of the physical properties of thin films and
5	their electronic and optoelectronic applications
7.2. Specific objectives	Inorganic materials based thin films: A2B6 compounds and A3B5
	compounds
	Deposition methods of inorganic thin films
	Study of the structural properties of inorganic thin films
	Study of the morphological and optical properties of inorganic thin films
	Study of the electrical properties of inorganic thin films
	Organic materials based thin films: conductive polymers
	Study of the structural properties of organic thin films
	Study of the morphological and optical properties of organic thin films
	Study of the electrical properties of organic thin films
	Thin films based electronic and optoelectronic devices: transistors, photo-
	diodes, photovoltaic structures, detectors

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations
Inorganic materials based thin films. Introductory information. General presentation.	Systematic exposition - lecture.	2 hours
Organic materials based thin films. Introductory information. General presentation.	Systematic exposition - lecture.	2 hours
Thermal vacuum evaporation: working principle; specific processes and phenomena for A2B6 compounds and for A3B5 compounds; adsorption	Systematic exposition - lecture. Examples.	4 hours
processes; condensation processes; appropriateness of		

the method.		
Magnetron sputtering (RF and DC modes): working principle, specific process and phenomena, working parameters, the influence of working gas (non- reactive/reactive), appropriateness of the method.	Systematic exposition - lecture. Examples.	4 hours
Chemical vapor deposition: working principle, diffusion phenomena, specific chemical processes involved, capacitive plasmas, appropriateness of the method.	Systematic exposition - lecture. Examples.	4 hours
Spin-coating: working principle, kinetics of solutions; appropriateness of the method.	Systematic exposition - lecture. Examples.	4 hours
Study of the structural properties of inorganic and organic materials based thin films.	Systematic exposition - lecture. Examples.	2 hours
Study of morphological and optical properties of inorganic and organic materials based thin films.	Systematic exposition - lecture. Examples.	2 hours
Study of the electrical properties of inorganic and organic materials based thin films.	Systematic exposition - lecture. Examples.	2 hours
Resume of lectures.	Systematic exposition - lecture. Examples.	2 hours
231, 2017.3. M. Ohring, <i>Materials Science of Thin Films</i>, Aca	domia Proce London LIV 2002	
 Lecture notes available on <u>http://solid.fizica.unib</u> J. George, <i>Preparation of thin films</i>, Cochin Unita, 1992. 	ouc.ro. hiversity of Science and Technolo	
5. J. George, Preparation of thin films, Cochin Ur	uc.ro.	
 J. George, <i>Preparation of thin films</i>, Cochin Ur India, 1992. 8.2. Tutorials [main tutorial subjects] 	niversity of Science and Technolo Teaching and learning techniques Teaching and learning	ogy, Cochin, Kerala
 5. J. George, <i>Preparation of thin films</i>, Cochin Ur India, 1992. 8.2. Tutorials [main tutorial subjects] 8.3. Practicals [research subjects, projects] Deposition of thin films by thermal vacuum evaporation 	ouc.ro. hiversity of Science and Technolo Teaching and learning techniques	ogy, Cochin, Kerala Observations
 5. J. George, <i>Preparation of thin films</i>, Cochin Ur India, 1992. 8.2. Tutorials [main tutorial subjects] 8.3. Practicals [research subjects, projects] Deposition of thin films by thermal vacuum evaporation Deposition of thin films by magnetron sputtering (RF and DC) 	niversity of Science and Technolo Teaching and learning techniques Teaching and learning Teaching and learning techniques	Observations Observations Observations 4 hours 4 hours
 5. J. George, <i>Preparation of thin films</i>, Cochin Ur India, 1992. 8.2. Tutorials [main tutorial subjects] 8.3. Practicals [research subjects, projects] Deposition of thin films by thermal vacuum evaporation Deposition of thin films by magnetron sputtering (RF and DC) Growth of thin films by chemical vapor deposition 	vuc.ro. iversity of Science and Technolo Teaching and learning techniques Teaching and learning techniques Guided practical work Guided practical work	Observations Observations Observations 4 hours 4 hours 4 hours
 5. J. George, <i>Preparation of thin films</i>, Cochin Ur India, 1992. 8.2. Tutorials [main tutorial subjects] 8.3. Practicals [research subjects, projects] Deposition of thin films by thermal vacuum evaporation Deposition of thin films by magnetron sputtering (RF and DC) Growth of thin films by chemical vapor deposition Growth of thin films by spin-coating 	niversity of Science and Technolo Teaching and learning techniques Teaching and learning Guided practical work Guided practical work	Observations Observations Observations A hours
 5. J. George, <i>Preparation of thin films</i>, Cochin Ur India, 1992. 8.2. Tutorials [main tutorial subjects] 8.3. Practicals [research subjects, projects] Deposition of thin films by thermal vacuum evaporation Deposition of thin films by magnetron sputtering (RF and DC) Growth of thin films by chemical vapor deposition 	vuc.ro. iversity of Science and Technolo Teaching and learning techniques Teaching and learning techniques Guided practical work Guided practical work	Observations Observations Observations 4 hours 4 hours 4 hours

Study of the electrical properties of inorganic and organic thin films: current-voltage characteristics, van	Guided practical work	2 hours
der Pauw measurements, Hall effect measurements		
Hand-on lab test & quiz	Group project	2 hours
8.4. Research project [if applicable]	Teaching and learning techniques	Observations
References:		
Laboratory notes		
• M.D. Soriago, I. Stickney, I.A. Pottomley, V.C.	Vim Thin Films Drongratio	n Characterization

• M.P. Soriaga, J. Stickney, L.A. Bottomley, Y-G. Kim, *Thin Films. Preparation. Characterization. Applications.*, Spronger Science + Business Media, LLC, 2002.

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical and practical competencies and skills corresponding to national and international standards, which are important for a master student in the field of modern Physics and technology. The contents and teaching methods were selected after a thorough analysis of the contents of similar course units in the syllabus of other universities from Romania or the European Union (Universite Paris-Sud, University of Cambridge, Universite Catholique Louvain-la-Neuve). The contents are in line with the requirements of the main employers of the graduates (industry, research institutes, high-school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.3. Weight în final mark				
10.4. Lecture	 Explicitness, coherence and concision of scientific statements; Correct use of physical models and of specific mathematical methods; Ability to analyze specific examples; 		70%			
10.5.1. Tutorials						
10.5.2. Practicals	 Knowledge and correct use of specific experimental techniques Data processing and analysis; 	Colloquium	30%			
10.5.3. Project [if applicable]						
10.6. Minimal requirements for passing the exam						
Requirements for mark 5	Requirements for mark 5 (10 points scale)					
Correct solving of subjects indicated as required for obtaining mark 5.						

Date	Teacher(s) name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)		
25.05.2024	Prof. dr. Ştefan Antohe	name(s) and signature(s)		
	-	Prof. dr. Ştefan Antohe		

Date of approval 10.06.2024

Head of department, Assoc. Prof. dr. Adrian Radu

III. Optional course units

DFC.107 Volunteering

1. Study program

University of Bucharest
Faculty of Physics
Department of Electricity, Solid State Physics and Biophysics
Physics
Master of Science
Physics of advanced materials and nanostructures
Full-time study

2. Course unit

2.1. Course title Volunteer			eering					
2.2. Teacher								
2.3. Tutorials ins	structor(s	5)						
2.4. Practicals in	structor((s)						
2.5. Year of		2.6.		2.7. Type of		2.8. Type	Content ¹⁾	DC
study	1	Semester	1	evaluation	V	of course unit	Type ²⁾	DFC

¹⁾ deepening (DA), speciality/fundamental (DS), complementary (DC); ²⁾ compulsory (DI), elective (DO), optional (DFC)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	distribution: Lecture	Practicals/Tutorials		
3.2. Total hours per semester	Lecture	Practicals/Tutorials		
Distribution of estimated time for study			hours	
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				
3.2.2. Research in library, study of electr	onic resources, field resea	arch		
3.2.3. Preparation for practicals/tutorials/	/projects/reports/homewo	rk		
3.2.4. Preparation for exam				
3.2.5. Other activities: volunteer internship in an entity with which the Faculty of Physics has a volunteer/research practice agreement			25	
3.3. Total hours of individual study				

	25
3.4. Total hours per semester	25
3.5. ECTS	1

4. Prerequisites (if necessary)

I \	
4.1. curriculum	- submission of a request (Annex 1 of the Regulation on volunteer credits within the
	University of Bucharest) - addressed to the dean and submitted to the secretariat within
	30 calendar days from the start of the semester
	- the host organization must be included in the National NGO Register: www.just.ro/
	registrul-national-ong or in the list of host organizations validated at the Faculty of
	Physics
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for practicals/tutorials	

6. Specific competences acquired

A	A					
Professional	- Application of Physics knowledge in solving some problems specific to the field.					
competences	- Application of Physics knowledge in specific situations from related fields.					
_	- Communication and analysis of didactic, scientific and popularizing information.					
	- Interdisciplinary approach of some topics in the field of physics.					
Transversal	Communication in mother tongue					
competences	Communication in foreign languages					
	• Mathematical skills and basic skills in science and technology					
	Digital skills					
	Social and civic skills					
	• Spirit of initiative and entrepreneurship					
	Cultural consciousness					

7. Course objectives

it course objectives						
7.1. General objective	Encouraging student involvement in specific extracurricular activities					
7.2. Specific objectives	To complement the competences acquired in the academic environment					
	by developing non-formal, transversal, civic and social skills and atti-					
	tudes					

8. Contents

8.1. Lecture	Teaching techniques	Observations/ hours
Bibliography:		
8.2. Tutorials	Teaching and learning techniques	Observations
Parliament and of the Council of 1 [Official Journal L 394 of 30.12.2	learning, Recommendation 2006/962/EC 18 December 2006 on key competencies 006] to several occupations, approved by CNF	for lifelong learning
5	First start	
86/24.06.2008 8.3 Laboratory	Teaching and learning	Observations
86/24.06.2008		

Bibliography:

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

In order to sketch the contents, to choose the teaching/learning methods, the coordinator of the course consulted the content of similar disciplines taught at Romanian universities and abroad. The content of the discipline is according to the requirements of employment in research institutes in physics and materials science, as well as in education (according to the law).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture			
10.5.1. Tutorials			
10.5.2 Laboratory			
10.5.3 Project	 Running the volunteer internship. Volunteer activity recognition file 	The volunteer's activity report, in written format - Annex 2 of the Regulation on volunteer credits from the University of Bucharest	50%
		Certificate issued by the host organization showing the number of volunteering hours completed, as well as a brief evaluation of the volunteer's activity - Annex 3 of the Regulation on volunteer credits from the University of Bucharest	50%
10.6. Minimal requireme	nts for passing the exam		1
	V		

Existence of the volunteer's activity report and of the Certificate issued by the host organization showing the number of volunteering hours completed, as well as a brief evaluation of the volunteer's activity

The assessment commission from the Faculty of Physics analyzes the mentioned documents and awards the grade *Admitted/Rejected*.

Date 10.06.2024

Teacher's name and signature

Practicals/Tutorials instructor(s) name(s) and signature(s)

Date of approval 10.06.2024

Head of Department

Assoc. Prof. Adrian Radu

DFC.112 Phase transitions in condensed matter

1. Study program

i otudy program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Physics of materials and nanostructures
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit title Interaction of laser radiation with matter									
2.2. Teacher					Conf. dr. Ciceron Berbecaru				
2.3. Tutorials/Practicals instructor(s)				Conf. dr. Ciceron	Berb	ecaru			
2.5. Year of		2.6	2.7.		7. Type of		2.8. Type	Content ¹⁾	DA
study	I	Semester			aluation	Е	of course		
							unit		
								Type ²⁾	DFC

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	1/1	
3.2. Total hours per semester						
	56	Lecture	28	Practicals/Tutorials	14/14	
Distribution of estimated time for study						
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography						
3.2.2. Research in library, study of electronic resources, field research						
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					10	
3.2.4. Preparation for exam					9	
3.2.5. Other activities						
3.3. Total hours of individual study						

3.3. Total hours of individual study	44
3.4. Total hours per semester	100
3.5. ECTS	4

4. Prerequisites (if necessary)

4.1. curriculum	Solid State Physics, Quantum mechanics, Thermodynamics and statistical physics
4.2. competences	Using of specialized software for data analysis

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Computer, Video projector
5.2. for practicals/tutorials	Specialized laboratory setups

6. Specific competences acquired

Professional competences	 Knowledge of physical phenomena associated to phase transitions Ability of comparing and analyzing physical phenomena based on fundamental principles Communication and analysis of scientific and general information in physics
Transversal competences	 Efficient use of sources of information and communication resources and training assistance in a foreign language. accomplishment of professional tasks in a professional way, assuming an ethical conduct in scientific research;

7. Course objectives

7.1. General objective	Understanding of physical phenomena associated to phase transitions
7.2. Specific objectives	Highlighting essential aspects for understanding of phenomena which
	allows for creative solutions to physical problems

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Landau theory of phase transitions Symmetry breaking. Order parameter. Landau's thermodynamic theory. Onstein-Zernike theory – gaussian approximation. Landa-Ginzburg criterion. Introduction to critical phenomena	Systematic exposition - lecture. Examples	6 hours
<u>Dielectric materials – phase transitions</u> Permitivity and dielelctric losses. Debye theory. Frequency and temperature dependence of complex dielectric function. Applications.	Systematic exposition - lecture. Examples	8 hours
Phase transitions în ferroelectric materials. Definition, classifications, structure, properties. Phase transitions. Spontaneous polarization and dielectric function în 1-st order phase transitions. Ferroelectric domains. Polarization and dielectric function în phase în 2-nd order phase transitions.	Systematic exposition - lecture. Examples	8 hours
<u>Ferroelectric crystals.</u> Domain structure. Effects of temperature and external electric field. Investigation methods. Ferroelectric ceramics for electronics. Phase diagrams. Pyroelectric materials. Multiferroics.	Systematic exposition - lecture. Examples	6 hours

Bibliography:

- 9. M. Dondera, V. Florescu. *Capitole de fizica atomica teoretica, Ed. UB, 2005.*
- **10.** F.H.M. Faisal, *Theory of multiphotonic processes*, Plenum Press, 1987
- **11.** C. J. Joachain, N. Kylstra, R. M. Potvliege, *Atoms in intense laser fields*, Cambridge University Press, 2012.
- 12. W. Greiner, Quantum Mechanics: Special Chapters, Springer, 1998

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Phase transitions with order parameter. Examples	Lecture. Problem solving.	6 hours
Critical phenomena. Critical exponents. Examples.	Lecture. Problem solving.	4 hours
Ferroelectric and piesoelectric crystals. Structure of material tensors.	Lecture. Problem solving.	4 hours
8.2. Practicals [research subjects, projects]	Teaching and learning techniques	Observations
Temperature dependence of spontaneous polarization for 1-st and 2-nd order phase transitions	Guided practical activity	2 hours
Temperature dependence of dielectric functions near phase transition points.	Guided practical activity	4 hours
Frequency dependence of dielectric function. Dielectric spectroscopy.	Guided practical activity	4 hours
Ferroelectric materials. TGS – crystal growth and properties.	Guided practical activity	4 hours

1. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions, Wiley-VCH Verlag, 2004.

2. J. D. Jackson Classical Electrodynamics (Wiley, 1962).

3. M. Boca, Lecture notes

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The contents and teaching methods were selected after an analysis of the contents of similar course units in the syllabus of other universities (LMU, KTH). The contents are in line with the requirements/expectations of the main employers of the graduates (research, academic, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark					
10.4. Lecture	- coherence and clarity of	Written test/oral examination						
	exposition							
	- correct use of physical models		50%					
	and theories							
10.5.1. Tutorials								
10.5.2. Practicals	- Knowledge of experimental	Colloquium	50%					
	techniques							
	- Analysis of experimental results							
10.5.3. Project [if								
applicable]								
10.6. Minimal requirer	nents for passing the exam							
Requirements for mar	k 5 (10 points scale)							
	icale have to be newformed							

All experiments in practicals have to be performed.

Correct presentation of the subjects indicated for mark 5 in the final exams.

Date 25.05.2024

Teacher's name and signature Conf. dr. Ciceron Berbecaru Practicals/Tutorials instructor(s) name(s) and signature(s) Conf. dr. Ciceron Berbecaru

Date of approval 10.06.2024

Head of Department Conf. dr. Adrian Radu

DFC.113 Interaction of laser radiation with matter

1. Study program

1. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
	and Lasers
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Theoretical and Computational Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit t	itle	Interaction of laser radiation with matter							
2.2. Teacher				Conf. dr. Madalir	na Boo	ca			
2.3. Tutorials/Practicals instructor(s)			Conf. dr. Madalir	na Boo	ca				
2.5. Year of		2.6			7. Type of		2.8. Type	Content ¹⁾	DA
study	Ι	Semester	II	eva	aluation	Е	of course		
							unit		
								Type ²⁾	DFC

¹⁾ deepening (DA), speciality/fundamental (DS); ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum		distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester		Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for stu	dv				hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				15	
3.2.2. Research in library, study of electronic resources, field research 10					10
3.2.3. Preparation for practicals/tutorials/projects/reports/homeworks					10
3.2.4. Preparation for exam				9	
3.2.5. Other activities				0	
3.3. Total hours of individual study	44				

	•••
3.4. Total hours per semester	100
	4
3.5. ECTS	4

4. Prerequisites (if necessary)

4.1. curriculum	Electrodynamics and relativity theory, Quantum mechanics
4.2. competences	Numerical / using of approximation methods for solving differential equations

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Computer, Video projector
5.2. for practicals/tutorials	Computer, Video projector

6. Specific competences acquired

Professional	
competences	- Identify and proper use of the main physical laws and principles in a given context.
	Identify and proper use of specific laws for simple systems in interaction with the
	electromagnetic field.
	-solving pf physics problems in given conditions
	- Using the acquired knowledge for understanding / modeling of processes in
	electromagnetic fields
	- Communication and analysis of didactic, scientific and general information in physics
Transversal	- Efficient use of sources of information and communication resources and training
competences	assistance in a foreign language.
	- accomplishment of professional tasks in an professional way, assuming an ethical conduct
	in scientific research;

7. Course objectives

7. Course objectives	
7.1. General objective	Presentation of the main processes in the interaction of radiation with the
	substance
7.2. Specific objectives	Understanding the classical / quantum theory of the interaction of
	electromagnetic radiation with matter
	- Understanding the evolution in time of some systems in interaction with
	the electromagnetic field
	- The ability to use approximate / numerical mathematical models in the
	analysis of the interaction of electromagnetic radiation with matter

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Physical processes in electromagnetic fields: overview.	Systematic exposition - lecture. Examples	2 hours
Electromagnetic waves and photons; introduction	Systematic exposition - lecture. Examples	2 hours
Classical description of the electromagnetic field, plane wave, Gaussian modes	Systematic exposition - lecture. Examples	4 hours
Description of the electromagnetic field in quantum theory	Systematic exposition - lecture. Examples	4 hours
Free particle in electromagnetic field: classical / quantum description.	Systematic exposition - lecture. Examples	4 hours
Radiation interaction with atomic systems: amplitude / transition rate, effective sections.	Systematic exposition - lecture. Examples	4 hours
Multiphotonic processes, perturbative / non- perturbative description	Systematic exposition - lecture. Examples	2 hours
Radiation scattering (Rayleigh, Raman, Compton).	Systematic exposition - lecture. Examples	4 hours
Elements of quantum electrodynamics in intense fields	Systematic exposition - lecture. Examples	2 hours

- 13. M. Dondera, V. Florescu. *Capitole de fizica atomica teoretica, Ed. UB*, 2005.
- 14. F.H.M. Faisal, Theory of multiphotonic processes, Plenum Press, 1987
- **15.** C. J. Joachain, N. Kylstra, R. M. Potvliege, *Atoms in intense laser fields*, Cambridge University Press, 2012.

16. W. Greiner, Quantum Mechanics: Special Chapters, Springer, 1998

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Numerical / approximate solutions of the Maxwell equations	Lecture. Problem solving.	4 hours
Motion of electrically charged particle in electromagnetic field, approximate / numerical solutions	Lecture. Problem solving.	6 hours
Volkov solutions in non-relativistic quantum mechanics	Lecture. Problem solving.	8 hours
Radiation reaction	Lecture. Problem solving.	4 hours
Perturbative description of the interaction of radiation with simple systems	Lecture. Problem solving.	4 hours
Elements of Floquet theory	Lecture. Problem solving.	2 hours

Bibliography:

1. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, *Atom-Photon Interactions*, Wiley-VCH Verlag, 2004.

- 2. J. D. Jackson Classical Electrodynamics (Wiley, 1962).
- 3. M. Boca, Lecture notes

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

The contents and teaching methods were selected after an analysis of the contents of similar course units in the syllabus of other universities (LMU, KTH). The contents are in line with the requirements/expectations of the main employers of the graduates (research, academic, secondary school teaching).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 - coherence and clarity of exposition - correct use of equations/mathematical methods/physical models and theories - ability to indicate/analyse specific examples 	Written test/oral examination	50%
10.5.1. Tutorials	- ability to use specific problem solving methods	Homeworks/written tests	50%
10.6. Minimal require	nents for passing the exam		

Requirements for mark 5 (10 points scale)

Solving of all homework, Correct presentation of the subjects indicated for mark 5 in the final exam.

Date 25.05.2024

Teacher's name and signature Conf. dr. Madalina Boca Practicals/Tutorials instructor(s) name(s) and signature(s) Conf. dr. Madalina Boca

Date of approval 10.06.2024

Head of Department Lect.dr. Roxana Zus

DFC.114 Volunteering

1. Study program

University of Bucharest
Faculty of Physics
Department of Electricity, Solid State Physics and Biophysics
Physics
Master of Science
Physics of advanced materials and nanostructures
Full-time study

2. Course unit

2.1. Course title		V	⁷ olunt	eering				
2.2. Teacher								
2.3. Tutorials ins	structor(s	5)						
2.4. Practicals in	structor((s)						
2.5. Year of		2.6.		2.7. Type of		2.8. Type	Content ¹⁾	DC
study	1	Semester	2	evaluation	V	of course unit	Type ²⁾	DFC

¹⁾ deepening (DA), speciality/fundamental (DS), complementary (DC); ²⁾ compulsory (DI), elective (DO), optional (DFC)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	distribution: Lecture	Practicals/Tutorials	
3.2. Total hours per semester	Lecture	Practicals/Tutorials	
Distribution of estimated time for study			
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography			
3.2.2. Research in library, study of electronic resources, field research			
3.2.3. Preparation for practicals/tutorials/projects/reports/homework			
3.2.4. Preparation for exam			
3.2.5. Other activities: volunteer internship in an entity with which the Faculty of Physics has a volunteer/research practice agreement			25
3.3. Total hours of individual study			I

	25
3.4. Total hours per semester	25
3.5. ECTS	1

4. Prerequisites (if necessary)

I \	
4.1. curriculum	- submission of a request (Annex 1 of the Regulation on volunteer credits within the
	University of Bucharest) - addressed to the dean and submitted to the secretariat within
	30 calendar days from the start of the semester
	- the host organization must be included in the National NGO Register: www.just.ro/
	registrul-national-ong or in the list of host organizations validated at the Faculty of
	Physics
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for practicals/tutorials	

6. Specific competences acquired

A	A		
Professional	- Application of Physics knowledge in solving some problems specific to the field.		
competences	- Application of Physics knowledge in specific situations from related fields.		
_	- Communication and analysis of didactic, scientific and popularizing information.		
	- Interdisciplinary approach of some topics in the field of physics.		
Transversal	Communication in mother tongue		
competences	Communication in foreign languages		
	 Mathematical skills and basic skills in science and technology 		
	Digital skills		
	Social and civic skills		
	Spirit of initiative and entrepreneurship		
	Cultural consciousness		

7. Course objectives

it course objectives		
7.1. General objective	Encouraging student involvement in specific extracurricular activities	
7.2. Specific objectives	To complement the competences acquired in the academic environment	
	by developing non-formal, transversal, civic and social skills and atti-	
	tudes	

8.1. Lecture	Teaching techniques	Observations/ hours
Bibliography:		
8.2. Tutorials	Teaching and learning techniques	Observations
Parliament and of the Council of 2 [Official Journal L 394 of 30.12.2	learning, Recommendation 2006/962/EC 18 December 2006 on key competencies 006] to several occupations, approved by CNF	for lifelong learning
5	First start	
86/24.06.2008 8.3 Laboratory	Teaching and learning	Observations
86/24.06.2008		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

In order to sketch the contents, to choose the teaching/learning methods, the coordinator of the course consulted the content of similar disciplines taught at Romanian universities and abroad. The content of the discipline is according to the requirements of employment in research institutes in physics and materials science, as well as in education (according to the law).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture			
10.5.1. Tutorials			
10.5.2 Laboratory			
10.5.3 Project	Running the volunteer internship.Volunteer activity recognition file	The volunteer's activity report, in written format - Annex 2 of the Regulation on volunteer credits from the University of Bucharest	50%
		Certificate issued by the host organization showing the number of volunteering hours completed, as well as a brief evaluation of the volunteer's activity - Annex 3 of the Regulation on volunteer credits from the University of Bucharest	50%
10.6. Minimal requireme	nts for passing the exam		

Existence of the volunteer's activity report and of the Certificate issued by the host organization showing the number of volunteering hours completed, as well as a brief evaluation of the volunteer's activity

The assessment commission from the Faculty of Physics analyzes the mentioned documents and awards the grade *Admitted/Rejected*.

Date 10.06.2024 Teacher's name and signature

Practicals/Tutorials instructor(s) name(s) and signature(s)

Date of approval 10.06.2024

Head of Department

Assoc. Prof. Adrian Radu

DFC.206 Volunteering

1. Study program

i otady program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Physics of advanced materials and nanostructures
1.7. Study mode	Full-time study
1.7. Study mode	Full-time study

2. Course unit

2.1. Course title		V	olunt	eering				
2.2. Teacher								
2.3. Tutorials ins	structor(s	s)						
2.4. Practicals in	structor((s)						
2.5. Year of		2.6.		2.7. Type of		2.8. Type	Content ¹⁾	DC
study	2	Semester	3	evaluation	V	of course unit	Type ²⁾	DFC

¹⁾ deepening (DA), speciality/fundamental (DS), complementary (DC); ²⁾ compulsory (DI), elective (DO), optional (DFC)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	distribution: Lecture	Practicals/Tutorials		
3.2. Total hours per semester	Lecture	Practicals/Tutorials		
Distribution of estimated time for study			hours	
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				
3.2.2. Research in library, study of electronic resources, field research				
3.2.3. Preparation for practicals/tutorials/	/projects/reports/homewo	rk		
3.2.4. Preparation for exam				
3.2.5. Other activities: volunteer internship in an entity with which the Faculty of Physics has a volunteer/research practice agreement				
3.3. Total hours of individual study				

	25
3.4. Total hours per semester	25
_	
3.5. ECTS	1

4. Prerequisites (if necessary)

I \	
4.1. curriculum	- submission of a request (Annex 1 of the Regulation on volunteer credits within the
	University of Bucharest) - addressed to the dean and submitted to the secretariat within
	30 calendar days from the start of the semester
	- the host organization must be included in the National NGO Register: www.just.ro/
	registrul-national-ong or in the list of host organizations validated at the Faculty of
	Physics
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for practicals/tutorials	

6. Specific competences acquired

Professional	- Application of Physics knowledge in solving some problems specific to the field.		
competences	- Application of Physics knowledge in specific situations from related fields.		
	- Communication and analysis of didactic, scientific and popularizing information.		
	- Interdisciplinary approach of some topics in the field of physics.		
Transversal	Communication in mother tongue		
competences	Communication in foreign languages		
	• Mathematical skills and basic skills in science and technology		
	Digital skills		
	Social and civic skills		
	Spirit of initiative and entrepreneurship		
	Cultural consciousness		

7. Course objectives

it course objectives			
7.1. General objective	Encouraging student involvement in specific extracurricular activities		
7.2. Specific objectives	To complement the competences acquired in the academic environment		
	by developing non-formal, transversal, civic and social skills and atti-		
	tudes		

8.1. Lecture	Teaching techniques	Observations/ hours
Bibliography:		
8.2. Tutorials	Teaching and learning techniques	Observations
Parliament and of the Council of 2 [Official Journal L 394 of 30.12.2	learning, Recommendation 2006/962/EC 18 December 2006 on key competencies 006] to several occupations, approved by CNF	for lifelong learning
5	First start	
86/24.06.2008 8.3 Laboratory	Teaching and learning	Observations
86/24.06.2008		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

In order to sketch the contents, to choose the teaching/learning methods, the coordinator of the course consulted the content of similar disciplines taught at Romanian universities and abroad. The content of the discipline is according to the requirements of employment in research institutes in physics and materials science, as well as in education (according to the law).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture			
10.5.1. Tutorials			
10.5.2 Laboratory			
10.5.3 Project	 Running the volunteer internship. Volunteer activity recognition file 	The volunteer's activity report, in written format - Annex 2 of the Regulation on volunteer credits from the University of Bucharest	50%
		Certificate issued by the host organization showing the number of volunteering hours completed, as well as a brief evaluation of the volunteer's activity - Annex 3 of the Regulation on volunteer credits from the University of Bucharest	50%
10.6. Minimal requireme	nts for passing the exam		1
	V		

Existence of the volunteer's activity report and of the Certificate issued by the host organization showing the number of volunteering hours completed, as well as a brief evaluation of the volunteer's activity

The assessment commission from the Faculty of Physics analyzes the mentioned documents and awards the grade *Admitted/Rejected*.

Date 10.06.2024

Teacher's name and signature

Practicals/Tutorials instructor(s) name(s) and signature(s)

Date of approval 10.06.2024

Head of Department

Assoc. Prof. Adrian Radu

DFC.207 Computational methods in condensed matter

1. Study program

i. Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Physics of advanced materials and nanostructures
1.7. Study mode	Full-time study

2. Course unit

2.1. Course title Computati			ational methods in m	odern	physics			
2.2. Teacher		Assoc. Prof. Alex	Assoc. Prof. Alexandru Nicolin / Lect. Dr. Roxana Zus					
2.3. Tutorials ins	tructor(s	5)						
2.4. Practicals instructor(s)		Dr. Mihai Marciu	Dr. Mihai Marciu					
2.5. Year of		2.6.		2.7. Type of		2.8. Type	Content ¹⁾	DA
study	2	Semester	3 evaluation		E	of course unit	Type ²⁾	DO

¹⁾ deepening (DA), speciality/fundamental (DS);
 ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for stu	dv				hours
Distribution of estimated time for study					nouis
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography					10
3.2.2. Research in library, study of electronic resources, field research					4
3.2.3. Preparation for practicals/tutorials/projects/reports/homework					
3.2.4. Preparation for exam					5
3.2.5. Other activities					0
3.3. Total hours of individual study	19				

3.4. Total hours per semester	75
3.5. ECTS	3

4. Prerequisites (if necessary)

4.1. curriculum	Programming languages, Linear algebra, Analytical mechanics, Electrodynamics,
	Quantum Mechanics, Thermodynamics and Statistical Physics
4.2. competences	Working with software packages which do not require a license for data analysis and
	data processing

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for practicals/tutorials	Scientific computing laboratory

6. Specific competences acquired

	titletes utgan tu
Professional	1. Understanding how to solve differential equations with Hamiltonian structure using
competences	the leapfrog method and related methods. Understanding time-reversibility and
	energy conservation.
	2. Understanding finite difference methods and their use in numerical study of the
	Schrödinger equation. Understanding the conservation of the norm of the wave
	function and the emergence of numerical instabilities.
	3. Understanding the use of finite difference methods for numerically solving Maxwell
	equations.
	4. Understanding the dynamics of electrically charged particles moving in an
	electromagnetic through the numerical solution of the Vlasov equation using the test
	particle method.
	5. Understanding particle-in-cell equations and self-consistent solution of field
	equations and those describing particle dynamics. Understanding the Boris
	algorithm for particle propagation over time and the Courant stability condition.
Transversal	• Efficient use of scientific information resources and of communication and of
competences	resources for professional formation in English.
	• Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

7. Course objectives

7.1. General objective	Presentation of computational methods in modern physics	
7.2. Specific objectives	Study of leapfrog method and related methods for solving differential	
	equations of Hamiltonian structure	
	Study of finite-difference methods for solving the Schrödinger equation	
	and Maxwell equations	
	Study of the test particle method used to numerically solve the Vlasov	
	equation	
	Study of particle-in-cell equations that describe the dynamics of electri-	
	cally charged particles in an electromagnetic field	
	The study of the interaction of laser pulses with metal clusters	

8.1. Lecture	Teaching techniques	Observations/ hours
Simplectic and near-simplectic methods for numer- ical solving of differential equations with Hamil- tonian structure. Energy and volume conservation in the phase space.	Systematic exposition - lecture. Examples	2 hours
Finite-difference methods for the three-dimensional Schrödinger equation (especially for periodic and harmonic potential). Conservation of the norm. Sta- bility conditions. Numerical instabilities. Border conditions. Analytical calculations for calibrating the accuracy of numerical schemes.	Systematic exposition - lecture. Examples	4 hours

Finite difference methods for Maxwell equations. Border conditions. Numerical instabilities.	Systematic exposition - lecture. Examples	6 hours
The Vlasov equation and the test particle method. Derivation of particle-in-cell equations. Study of shape functions.	Systematic exposition - lecture. Examples	4 hours
Self-consistent solving of field equations and those describing particle dynamics. Boris algorithm for particle propagation over time. Courant stability condition.		4 hours
Interaction of laser pulses with metal clusters	Systematic exposition - lecture. Examples	4 hours
Comparative presentation of particle-in-cell codes available for solving equations.	Systematic exposition - lecture. Examples	4 hours
Bibliography		

- **1.** B. Leimkuhler și S. Reich, *Simulating Hamiltonian dynamics*, Cambridge University Press, 2004.
- 2. D.F. Griffiths, J.W. Dold și D.J. Silvester, *Essential partial differential equations*. Analytical and *computational aspects*, Springer, 2015.
- **3.** S. Mazumder, *Numerical methods for partial differential equations*. *Finite difference and finite volume methods*, Academic Press, 2016.
- 4. S.E. Koonin și D.C. Meredith, *Computational physics. Fortran versions*, Perseus Books, 1998.
- 5. P. Mulser și D. Bauer, *High power laser-matter interaction*, Springer, 2010.
- 6. P.G. Reinhard și E. Suraud, Introduction to cluster dynamics, Wiley-VCH, 2004.
- 7. K. Langanke, J.A. Maruhn și S.E. Koonin, Eds., *Computational Nuclear Physics 2. Nuclear Reactions*, Springer, 1993.
- **8.** T.D. Arber *et al.*, *Contemporary particle-in-cell approach to laser-plasma modelling*, Plasma Phys. Control. Fusion **57**, 113001 (2015)

8.2. Tutorials	Teaching and learning techniques	Observations
Solving the three-dimensional Schrödinger equation for a harmonic (radial) and periodic (transverse) potential. Variational determination of the solution of the Schrödinger equation with cubic nonlinearities.	Lecture. Problem solving	4 hours
The analytical solution of Maxwell equations in a two- and three-dimensional numerical setup, in homogeneous environments.	Lecture. Problem solving	4 hours

Bibliography:

- G.L. Squires, *Problems in quantum mechanics with solutions*, Cambridge University Press, 1995.
- Y.-K. Lim, Problems and solutions on electromagnetism, World Scientific, 1993

8.3 Laboratory	Teaching and learning techniques	Observations
Numerical solution of differential equations with Hamiltonian structure by simplectic and quasi-sim- plectic methods. Code in Octave/python/C/C ++	Supervised practical activity	4 hours
The numerical solution of the Schrödinger equa- tion. Code in Octave/python/C/C ++	Supervised practical activity	4 hours
Numerical solution of Maxwell equations. Code in Octave/python/C/C++	Supervised practical activity	4 hours
Numerical solution of particle-in-cell equations. Observation of ultra-intense laser pulse interaction	Supervised practical activity	6 hours

with gaseous and solid targets, wakefield accelera- tion. Use of EPOCH PIC code		
Numerical solution of the Vlasov equation. Use of	Supervised practical	2 hours
existing FORTRAN programs	activity	2 110013
Bibliography:		

17. B. Leimkuhler și S. Reich, *Simulating Hamiltonian dynamics*, Cambridge University Press, 2004.

- **18.** K.W. Morton și D.F. Mayers, *Numerical solution of partial differential equations*, Cambridge University Press, 2005.
- **19.** Yu.N. Grigoryev *et al.*, *Numerical particle-in-cell methods: Theory and applications*, de Gruyter, 2002.

8.4 Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

In order to sketch the contents, to choose the teaching/learning methods, the coordinator of the course consulted the content of similar disciplines taught at Romanian universities and abroad. The content of the discipline is according to the requirements of employment in research institutes in physics and materials science, as well as in education (according to the law).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark				
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test/oral examination	60%				
10.5.1. Tutorials	- Ability to use specific problem- solving methods	Homework	40%				
10.5.2 Laboratory	- Ability to use specific problem- solving methods	Homework					
10.5.3 Project							
10.6. Minimal requirement	10.6. Minimal requirements for passing the exam						
Requirements for mark 5 (10 points scale)							
At least 50% of exam score	e and of homeworks.						

Date	Teacher's name and signature	Practicals/Tutorials instructor(s) name(s) and signature(s)
10.06.2024	Assoc. Prof. Alexandru Nicolin, Lect. Dr. Roxana Zus	Dr. Mihai Marciu,
Date of approval 10.06.2024		Head of Department

Lect. dr. Roxana Zus

DFC.208 Virtual instrumentation and data acquisition

1. Study program

i Study program	
1.1. University	University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Electricity, Solid State Physics and Biophysics
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	Physics of advanced materials and nanostructures
1.7. Study mode	Full-time study

2. Course unit

2.1. Course title		V	'irtual	ins	trumentation and d	ata ac	quisition		
2.2. Teacher					Conf. dr. Adrian F	Radu, İ	Lect. dr. Bog	dan Biță	
2.3. Tutorials ins	structor(s	5)							
2.4. Practicals in	structor((s)			Conf. dr. Adrian H	Radu, İ	Lect. dr. Bog	dan Biță	
2.5. Year of		2.6.			7. Type of		2.8. Type	Content ¹⁾	DA
study	2	Semester	3	ev	aluation	Е	of course	Type ²⁾	DO
1)							unit		

¹⁾ deepening (DA), speciality/fundamental (DS);
 ²⁾ compulsory (DI), elective (DO), optional (DFac)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for stu	idy				hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography 10				10	
3.2.2. Research in library, study of el	lectron	ic resources, field resea	arch		4
3.2.3. Preparation for practicals/tutor	ials/pr	ojects/reports/homewo	rk		
3.2.4. Preparation for exam					5
3.2.5. Other activities					0
3.3. Total hours of individual study	19				

3.4. Total hours per semester	75
3.5. ECTS	3

4. Prerequisites (if necessary)

4.1. curriculum	Programming languages, Electricity and magnetism, Electronics
4.2. competences	computer programming

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for practicals/tutorials	Scientific computing laboratory

6. Specific competences acquired

r	ctenees acquirea
Professional	1. Understanding construction of LabVIEW virtual instruments
competences	2. Developing applications for data acquisition and processing
Transversal	Efficient use of scientific information resources and of communication and of
competences	resources for professional formation in English.
_	• Efficient and responsible implementation of professional tasks, with observance of
	the laws, ethics and deontology.

7. Course objectives

7.1. General objective	Presentation of techniques for developing and using virtual instrumentation
7.2. Specific objectives	Study of visual programming techniques in LabVIEW

8. Contents

8.1. Lecture	Teaching techniques	Observations/ hours
Visual programming in LabVIEW. Programming elements and structure of virtual instruments.	Systematic exposition - lecture. Examples	14 hours
Virtual instruments. Applications for data acquisition	Systematic exposition - lecture. Examples	14 hours
Finite difference methods for Maxwell equations. Border conditions. Numerical instabilities.	Systematic exposition - lecture. Examples	6 hours
Bibliography:1. A. Radu, B. Biță, Lecture notes		
8.2. Tutorials	Teaching and learning techniques	Observations
Bibliography: •		
8.3 Laboratory	Teaching and learning	Observations
	techniques	-
Examples of programming in LabVIEW. Using of virtual instruments for data acquisition and processing	Supervised practical activity	28 hours
Bibliography: 1. A. Radu, B. Biță, Lecture notes		
8.4 Project	Teaching and learning techniques	Observations
Bibliography:		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

In order to sketch the contents, to choose the teaching/learning methods, the coordinator of the course consulted the content of similar disciplines taught at Romanian universities and abroad. The content of the discipline is according to the requirements of employment in research institutes in physics and materials science, as well as in education (according to the law).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 Clarity and coherence of exposition Correct use of the methods/ physical models The ability to give specific examples 	Written test/oral examination	60%
10.5.1. Tutorials			
10.5.2 Laboratory	- Ability to use specific problem- solving methods	Lab colloquium	40%
10.5.3 Project			
10.6. Minimal requireme	nts for passing the exam		
Requirements for mark 5	5 (10 points scale)		
At least 50% of exam scor	es		

Date
10.06.2024

Teacher's name and signature Assoc. Prof. Adrian Radu

Practicals/Tutorials instructor(s) name(s) and signature(s)

Lect. Dr. Bogdan Biță

Assoc. Prof. Adrian Radu Lect. Dr. Bogdan Biță

Head of Department

Date of approval 10.06.2024

Assoc. Prof. Adrian Radu

DFC.213 Volunteering

1. Study program

University of Bucharest
Faculty of Physics
Department of Electricity, Solid State Physics and Biophysics
Physics
Master of Science
Physics of advanced materials and nanostructures
Full-time study

2. Course unit

2.1. Course title		V	olunt	eering				
2.2. Teacher								
2.3. Tutorials ins	structor(s	s)						
2.4. Practicals in	structor((s)						
2.5. Year of		2.6.		2.7. Type of		2.8. Type	Content ¹⁾	DC
study	2	Semester	4	evaluation	V	of course unit	Type ²⁾	DFC

¹⁾ deepening (DA), speciality/fundamental (DS), complementary (DC); ²⁾ compulsory (DI), elective (DO), optional (DFC)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	distribution: Lecture	Practicals/Tutorials	
3.2. Total hours per semester	Lecture	Practicals/Tutorials	
Distribution of estimated time for study			hours
3.2.1. Learning by using one's own cours	se notes, manuals, lecture	notes, bibliography	
3.2.2. Research in library, study of electr	onic resources, field resea	ırch	
3.2.3. Preparation for practicals/tutorials/	/projects/reports/homewoi	'n	
3.2.4. Preparation for exam			
3.2.5. Other activities: volunteer internsl volunteer/research practice agreement	hip in an entity with which	h the Faculty of Physics has a	25
3.3. Total hours of individual study			

	25
3.4. Total hours per semester	25
3.5. ECTS	1

4. Prerequisites (if necessary)

I \	
4.1. curriculum	- submission of a request (Annex 1 of the Regulation on volunteer credits within the
	University of Bucharest) - addressed to the dean and submitted to the secretariat within
	30 calendar days from the start of the semester
	- the host organization must be included in the National NGO Register: www.just.ro/
	registrul-national-ong or in the list of host organizations validated at the Faculty of
	Physics
4.2. competences	

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	
5.2. for practicals/tutorials	

6. Specific competences acquired

A	A
Professional	- Application of Physics knowledge in solving some problems specific to the field.
competences	- Application of Physics knowledge in specific situations from related fields.
_	- Communication and analysis of didactic, scientific and popularizing information.
	- Interdisciplinary approach of some topics in the field of physics.
Transversal	Communication in mother tongue
competences	Communication in foreign languages
	 Mathematical skills and basic skills in science and technology
	Digital skills
	Social and civic skills
	Spirit of initiative and entrepreneurship
	Cultural consciousness

7. Course objectives

it course objectives	
7.1. General objective	Encouraging student involvement in specific extracurricular activities
7.2. Specific objectives	To complement the competences acquired in the academic environment
	by developing non-formal, transversal, civic and social skills and atti-
	tudes

8.1. Lecture	Teaching techniques	Observations/ hours
Bibliography:		
8.2. Tutorials	Teaching and learning techniques	Observations
Parliament and of the Council of 2 [Official Journal L 394 of 30.12.2	learning, Recommendation 2006/962/EC 18 December 2006 on key competencies 006] to several occupations, approved by CNF	for lifelong learning
5	First start	
86/24.06.2008 8.3 Laboratory	Teaching and learning	Observations
86/24.06.2008		

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

In order to sketch the contents, to choose the teaching/learning methods, the coordinator of the course consulted the content of similar disciplines taught at Romanian universities and abroad. The content of the discipline is according to the requirements of employment in research institutes in physics and materials science, as well as in education (according to the law).

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture			
10.5.1. Tutorials			
10.5.2 Laboratory			
10.5.3 Project	Running the volunteer internship.Volunteer activity recognition file	The volunteer's activity report, in written format - Annex 2 of the Regulation on volunteer credits from the University of Bucharest	50%
		Certificate issued by the host organization showing the number of volunteering hours completed, as well as a brief evaluation of the volunteer's activity - Annex 3 of the Regulation on volunteer credits from the University of Bucharest	50%
10.6. Minimal requirements for passing the exam			

Existence of the volunteer's activity report and of the Certificate issued by the host organization showing the number of volunteering hours completed, as well as a brief evaluation of the volunteer's activity

The assessment commission from the Faculty of Physics analyzes the mentioned documents and awards the grade *Admitted/Rejected*.

Date 10.06.2024

Teacher's name and signature

Practicals/Tutorials instructor(s) name(s) and signature(s)

Date of approval 10.06.2024

Head of Department

Assoc. Prof. Adrian Radu